

CDCE913, CDCEL913 SCAS849I - JUNE 2007 - REVISED AUGUST 2024

CDCE(L)913: Flexible Low Power LVCMOS Clock Generator With SSC Support for EMI Reduction

1 Features

- Member of programmable clock generator family
 - CDCE913/CDCEL913: 1-PLL, 3 outputs
 - CDCE925/CDCEL925: 2-PLL, 5 outputs
 - CDCE937/CDCEL937: 3-PLL, 7 outputs
 - CDCE949/CDCEL949: 4-PLL, 9 outputs
- In-system programmability and EEPROM
 - Serial programmable volatile register
 - Nonvolatile EEPROM to store customer settings
- Flexible input clocking concept
 - External crystal: 8MHz to 32MHz
 - On-chip VCXO: pull range ±150ppm
 - Single-ended LVCMOS Up to 160MHz
- Free selectable output frequency up to 230 MHz
- Low-noise PLL core
 - PLL loop filter components integrated
 - Low period litter (typical 50ps)
- Separate output supply pins
 - CDCE913: 3.3V and 2.5V
 - CDCEL913: 1.8V
- Flexible clock driver:
 - Three user-definable control inputs [S0/S1/ S2], for example, SSC selection, frequency switching, output enable, or power down
 - Generates highly accurate clocks for video, audio, USB, IEEE1394, RFID, Bluetooth®, WLAN, Ethernet[™], and GPS
 - Generates common clock frequencies used with TI- DaVinci™, OMAP™, DSPs
 - Programmable SSC modulation
 - Enables 0PPM clock generation
- 1.8V device power supply
- Wide temperature range: -40°C to 85°C
- Packaged in TSSOP
- Development and programming kit for easy PLL design and programming (TI Pro-Clock[™])

2 Applications

- Digital Televisions (D-TVs)
- Set-Top Boxes (STBs)
- **IP-STBs**
- **DVD** players
- **DVD** recorders
- **Printers**

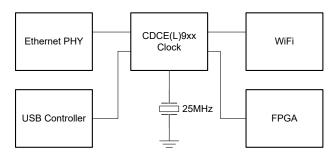
3 Description

CDCE913 and CDCEL913 devices modular PLL-based, low-cost, high-performance, programmable clock synthesizers. The devices generate up to three output clocks from a single input frequency. Each output can be programmed in-system for any clock frequency up to 230MHz, using the integrated configurable PLL.

The CDCx913 has separate output supply pins, V_{DDOUT}, which is 1.8V for CDCEL913 and 2.5V to 3.3V for CDCE913.

The input accepts an external crystal or LVCMOS clock signal. A selectable on-chip VCXO allows synchronization of the output frequency to an external control signal.

The PLL supports SSC (spread-spectrum clocking) electromagnetic interference performance.


device supports nonvolatile programming for easy customization of the device to the application. All device settings are programmable through the SDA/SCL bus, a 2-wire serial interface.

The CDCx913 operates in a 1.8V environment and operates in a temperature range of -40°C to 85°C.

Package Information

PART NUMBER	PACKAGE (1)	PACKAGE SIZE ⁽²⁾
CDCE913 CDCEL913	PW (TSSOP, 14)	5mm × 6.4mm

- (1) For all available packages, see the orderable addendum at the end of the data sheet.
- The package size (length × width) is a nominal value and includes pins, where applicable.

Typical Application Schematic

Table of Contents

1 Features	1	7.4 Device Functional Modes	13
2 Applications		7.5 Programming	
3 Description		8 Application and Implementation	
4 Pin Configuration and Functions		8.1 Application Information	
5 Specifications	4	8.2 Typical Application	
5.1 Absolute Maximum Ratings		8.3 Power Supply Recommendations	
5.2 ESD Ratings		8.4 Layout	
5.3 Recommended Operating Conditions		9 Register Maps	
5.4 Thermal Information	<mark>5</mark>	9.1 SDA/SCL Configuration Registers	24
5.5 Electrical Characteristics	<mark>5</mark>	10 Device and Documentation Support	28
5.6 EEPROM Specification	7	10.1 Documentation Support	28
5.7 Timing Requirements: CLK IN	7	10.2 Receiving Notification of Documentation Update	es <mark>28</mark>
5.8 Timing Requirements: SDA/SCL (1)	7	10.3 Support Resources	28
5.9 Typical Characteristics		10.4 Trademarks	
6 Parameter Measurement Information	9	10.5 Electrostatic Discharge Caution	28
7 Detailed Description	10	10.6 Glossary	28
7.1 Overview		11 Revision History	
7.2 Functional Block Diagram	10	12 Mechanical, Packaging, and Orderable	
7.3 Feature Description	11	Information	29

4 Pin Configuration and Functions

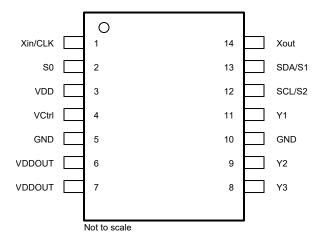


Figure 4-1. PW Package 14-Pin TSSOP Top View

Table 4-1. Pin Functions

PIN	ı	Time1	DESCRIPTION
NAME	NO.	Type1	DESCRIPTION
GND	5, 10	G	Ground
SCL/S2	12	I	SCL: serial clock input LVCMOS (default configuration), internal pullup 500 k Ω or S2: user-programmable control input; LVCMOS inputs; 500-k Ω internal pullup
SDA/S1	13	I/O or I	SDA: bidirectional serial data input/output (default configuration), LVCMOS internal pullup; or S1: user-programmable control input; LVCMOS inputs; 500-kΩ internal pullup
S0	2	I	User-programmable control input S0; LVCMOS inputs; 500-kΩ internal pullup
VCtrl	4	I	VCXO control voltage (leave open or pull up when not used)
VDD	3	Р	1.8-V power supply for the device
VDDOUT	6, 7	Р	CDCE913: 3.3-V or 2.5-V supply for all outputs
VDDOOT	0, 1		CDCEL913: 1.8-V supply for all outputs
Xin/CLK	1	I	Crystal oscillator input or LVCMOS clock Input (selectable through SDA/SCL bus)
Xout	14	0	Crystal oscillator output (leave open or pull up when not used)
Y1	11	0	LVCMOS outputs
Y2	9	0	LVCMOS outputs
Y3	8	0	LVCMOS outputs

1. In = Input, O = Output, I/O = Input or Output G = Ground, P = Power

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V_{DD}	Supply voltage		-0.5	2.5	V
Vancuit	Output clocks supply voltage	CDCEL913	-0.5	V_{DD}	V
V _{DDOUT}		CDCE913	-0.5	3.6 + 0.5	v
VI	Input voltage ^{(2) (3)}		-0.5	V _{DD} + 0.5	V
Vo	Output voltage ⁽²⁾		-0.5	V _{DDOUT} + 0.5	V
I	Input current (V _I < 0, V _I > V _{DD})			20	mA
Io	Continuous output current			50	mA
TJ	Maximum junction temperature			125	°C
T _{stg}	Storage temperature		-65	150	

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime

5.2 ESD Ratings

			VALUE	UNIT
V _(ESD) Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±2000	V	
	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±1500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

		MIN	NOM	MAX	UNIT
V_{DD}	Device supply voltage	1.7	1.8	1.9	V
V.	Output Yx supply voltage for CDCE913, V _{DDOUT}	2.3		3.6	V
Vo	Output Yx supply voltage for CDCEL913, V _{DDOUT}	1.7		1.9	V
V_{IL}	Low-level input voltage, LVCMOS			$0.3 \times V_{DD}$	V
V _{IH}	High-level input voltage, LVCMOS	0.7 × V _{DD}			V
V _{I (thresh)}	Input voltage threshold, LVCMOS		0.5 × V _{DD}		V
$V_{I(S)}$	Input voltage range, S0	0		1.9	V
	Input voltage range S1, S2, SDA, SCL; V _{I(thresh)} = 0.5 V _{DD}	0		3.6	V
V _{I(CLK)}	Input voltage range CLK	0		1.9	V
	Output current (V _{DDOUT} = 3.3 V)			±12	
I_{OH}/I_{OL}	Output current (V _{DDOUT} = 2.5 V)			±10	mA
	Output current (V _{DDOUT} = 1.8 V)			±8	
C _L	Output load, LVCMOS			15	pF
T _A	Operating free-air temperature	-40		85	°C
RECOM	MENDED CRYSTAL/VCXO SPECIFICATIONS (1)				
f _{Xtal}	Crystal input frequency range (fundamental mode)	8	27	32	MHz
ESR	Effective series resistance			100	Ω
f _{PR}	Pulling range (0 V ≤ V _{Ctrl} ≤ 1.8 V) ⁽²⁾	±120	±150		ppm
	Frequency control voltage, V _{Ctrl}	0		V_{DD}	V

Product Folder Links: CDCE913 CDCEL913

⁽²⁾ The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

⁽³⁾ SDA and SCL can go up to 3.6 V as stated in the Recommended Operating Conditions table.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

		MIN	NOM	MAX	UNIT
C ₀ /C ₁	Pullability ratio			220	
C _L	On-chip load capacitance at Xin and Xout	0		20	pF

- 1) For more information about VCXO configuration, and crystal recommendation, see VCXO Application Guideline for CDCE(L)9xx Family (application note).
- (2) Pulling range depends on crystal type, on-chip crystal load capacitance, and PCB stray capacitance; pulling range of minimum ±120 ppm applies for crystal listed in VCXO Application Guideline for CDCE(L)9xx Family (application note).

5.4 Thermal Information

over operating free-air temperature range (unless otherwise noted)

			CDCEx913	
	THERMAL METRIC ⁽¹⁾ (2) (3)		PW [TSSOP]	UNIT
			14 PINS	
		Airflow 0 Ifm	106	
		Airflow 150 lfm	93	
$R_{\theta JA}$	_{0JA} Junction-to-ambient thermal resistance	Airflow 200 lfm	92	°C/W
		Airflow 250 lfm	90	
		Airflow 500 lfm	85	
R _θ JC(top)	Junction-to-case (top) thermal resistance		1.4	°C/W
R _{θJB}	Junction-to-board thermal resistance		66	°C/W
ΨЈТ	Junction-to-top characterization parameter		1.35	°C/W
ΨЈВ	Junction-to-board characterization parameter		61.83	°C/W
R _θ JC(bot)	Junction-to-case (bottom) thermal resistance		62	°C/W

- (1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application note.
- (2) The package thermal impedance is calculated in accordance with JESD 51 and JEDEC2S2P (high-K board).
- (3) For the most-current package and ordering information, see the *Package Option Addendum* at the end of this document, or see the TI website at www.ti.com.

5.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDIT	IONS	MIN	TYP ⁽¹⁾	MAX	UNIT
OVERALL	PARAMETER						
		All outputs off, f _{CLK} = 27 MHz,	All PLLS on		11		
I _{DD}	Supply current (see Figure 5-1)	f _{VCO} = 135 MHz; f _{OUT} = 27 MHz	Per PLL		9		mA
1	Supply current (see Figure 5-2 and	No load, all outputs on,	V _{DDOUT} = 3.3 V		1.3		mA
I _{DD(OUT)}	Figure 5-3)	f _{OUT} = 27 MHz	V _{DDOUT} = 1.8 V		0.7		IIIA
I _{DD(PD)}	Power-down current. Every circuit powered down except SDA/SCL	f _{IN} = 0 MHz, V _{DD} = 1.9 V			30		μΑ
V _(PUC)	Supply voltage V _{dd} threshold for power-up control circuit			0.85		1.45	V
f _{VCO}	VCO frequency range of PLL			80		230	MHz
f	LVCMOS output frequency	V _{DDOUT} = 3.3 V				230	MHz
f _{OUT}	EV CIVIOS output frequency	V _{DDOUT} = 1.8 V				230	IVITIZ
LVCMOS	PARAMETER	•					
V _{IK}	LVCMOS input voltage	V _{DD} = 1.7 V; I _I = -18 mA				-1.2	V
I _I	LVCMOS input current	V _I = 0 V or V _{DD} ; V _{DD} = 1.9 V				±5	μA
I _{IH}	LVCMOS input current for S0/S1/S2	V _I = V _{DD} ; V _{DD} = 1.9 V				5	μA
I _{IL}	LVCMOS input current for S0/S1/S2	V _I = 0 V; V _{DD} = 1.9 V				-4	μA

Copyright © 2024 Texas Instruments Incorporated

Product Folder Links: CDCE913 CDCEL913

over recommended operating free-air temperature range (unless otherwise noted)

cout capacitance at Xin/Clk cout capacitance at Xout cout capacitance at SO/S1/S2 MOS PARAMETER FOR VDDOUT = CMOS high-level output voltage CMOS low-level output voltage copagation delay se and fall time cole-to-cycle jitter(2) (3) cole-to-peak period jitter(3) cole-to-peak period jitter(3) cole-to-peak period jitter(4) cole-to-peak period jitter(5) cole-to-pe	V _{DDOUT} = 3 V, I _{OH} = -0.1 mA V _{DDOUT} = 3 V, I _{OH} = -8 mA V _{DDOUT} = 3 V, I _{OH} = -12 mA V _{DDOUT} = 3 V, I _{OL} = 0.1 mA V _{DDOUT} = 3 V, I _{OL} = 8 mA V _{DDOUT} = 3 V, I _{OL} = 12 mA PLL bypass V _{DDOUT} = 3.3 V (20%-80%) 1 PLL switching, Y2-to-Y3 1 PLL switching, Y2-to-Y3 f _{OUT} = 50 MHz; Y1-to-Y3 f _{VCO} = 100 MHz; Pdiv = 1 2.5 V - MODE	2.9 2.4 2.2	3.2 0.6 50	0.1 0.5 0.8	pF V V ns ns
CMOS low-level output voltage CMOS low-level output voltage CMOS low-level output voltage CMOS low-level output voltage copagation delay se and fall time cole-to-cycle jitter ^{(2) (3)} sak-to-peak period jitter ⁽³⁾ stak-to-peak period jitter ⁽³⁾ statut skew ⁽⁴⁾ , See Table 7-2 statut duty cycle ⁽⁵⁾ CMOS PARAMETER for V _{DDOUT} = 2	V _{IS} = 0 V or V _{DD} 3.3 V - MODE V _{DDOUT} = 3 V, I _{OH} = -0.1 mA V _{DDOUT} = 3 V, I _{OH} = -8 mA V _{DDOUT} = 3 V, I _{OL} = 0.1 mA V _{DDOUT} = 3 V, I _{OL} = 0.1 mA V _{DDOUT} = 3 V, I _{OL} = 12 mA V _{DDOUT} = 3 V, I _{OL} = 12 mA PLL bypass V _{DDOUT} = 3.3 V (20%-80%) 1 PLL switching, Y2-to-Y3 1 PLL switching, Y2-to-Y3 f _{OUT} = 50 MHz; Y1-to-Y3 f _{VCO} = 100 MHz; Pdiv = 1	2.4	3.2 0.6 50	0.5	V
MOS PARAMETER FOR VDDOUT = CMOS high-level output voltage CMOS low-level output voltage opagation delay se and fall time vcle-to-cycle jitter ⁽²⁾ (3) sak-to-peak period jitter ⁽³⁾ utput skew ⁽⁴⁾ , See Table 7-2 utput duty cycle ⁽⁵⁾ CMOS PARAMETER for VDDOUT = 2	3.3 V - MODE V_DDOUT = 3 V, I_OH = -0.1 mA V_DDOUT = 3 V, I_OH = -8 mA V_DDOUT = 3 V, I_OH = -12 mA V_DDOUT = 3 V, I_OL = 0.1 mA V_DDOUT = 3 V, I_OL = 8 mA V_DDOUT = 3 V, I_OL = 12 mA PLL bypass V_DDOUT = 3.3 V (20%-80%) 1 PLL switching, Y2-to-Y3 1 PLL switching, Y2-to-Y3 f_OUT = 50 MHz; Y1-to-Y3 f_VCO = 100 MHz; Pdiv = 1 2.5 V - MODE	2.4	3.2 0.6 50	0.5	V
CMOS high-level output voltage CMOS low-level output voltage opagation delay se and fall time role-to-cycle jitter ^{(2) (3)} sak-to-peak period jitter ⁽³⁾ utput skew ⁽⁴⁾ , See Table 7-2 utput duty cycle ⁽⁵⁾ CMOS PARAMETER for V _{DDOUT} = 2	V _{DDOUT} = 3 V, I _{OH} = -0.1 mA V _{DDOUT} = 3 V, I _{OH} = -8 mA V _{DDOUT} = 3 V, I _{OH} = -12 mA V _{DDOUT} = 3 V, I _{OL} = 0.1 mA V _{DDOUT} = 3 V, I _{OL} = 8 mA V _{DDOUT} = 3 V, I _{OL} = 12 mA PLL bypass V _{DDOUT} = 3.3 V (20%-80%) 1 PLL switching, Y2-to-Y3 1 PLL switching, Y2-to-Y3 f _{OUT} = 50 MHz; Y1-to-Y3 f _{VCO} = 100 MHz; Pdiv = 1 2.5 V - MODE	2.4	0.6 50	0.5	V
CMOS low-level output voltage opagation delay se and fall time role-to-cycle jitter ^{(2) (3)} sak-to-peak period jitter ⁽³⁾ utput skew ⁽⁴⁾ , See Table 7-2 utput duty cycle ⁽⁵⁾ CMOS PARAMETER for V _{DDOUT} = 2	V _{DDOUT} = 3 V, I _{OH} = -8 mA V _{DDOUT} = 3 V, I _{OH} = -12 mA V _{DDOUT} = 3 V, I _{OL} = 0.1 mA V _{DDOUT} = 3 V, I _{OL} = 8 mA V _{DDOUT} = 3 V, I _{OL} = 12 mA PLL bypass V _{DDOUT} = 3.3 V (20%-80%) 1 PLL switching, Y2-to-Y3 1 PLL switching, Y2-to-Y3 f _{OUT} = 50 MHz; Y1-to-Y3 f _{VCO} = 100 MHz; Pdiv = 1 2.5 V - MODE	2.4	0.6 50	0.5	V
CMOS low-level output voltage opagation delay se and fall time role-to-cycle jitter ^{(2) (3)} sak-to-peak period jitter ⁽³⁾ utput skew ⁽⁴⁾ , See Table 7-2 utput duty cycle ⁽⁵⁾ CMOS PARAMETER for V _{DDOUT} = 2	V _{DDOUT} = 3 V, I _{OH} = -12 mA V _{DDOUT} = 3 V, I _{OL} = 0.1 mA V _{DDOUT} = 3 V, I _{OL} = 8 mA V _{DDOUT} = 3 V, I _{OL} = 12 mA PLL bypass V _{DDOUT} = 3.3 V (20%-80%) 1 PLL switching, Y2-to-Y3 1 PLL switching, Y2-to-Y3 f _{OUT} = 50 MHz; Y1-to-Y3 f _{VCO} = 100 MHz; Pdiv = 1 2.5 V - MODE	2.2	0.6 50	0.5	V
opagation delay se and fall time role-to-cycle jitter ^{(2) (3)} sak-to-peak period jitter ⁽³⁾ stput skew ⁽⁴⁾ , See Table 7-2 stput duty cycle ⁽⁵⁾ CMOS PARAMETER for V _{DDOUT} = 2	V _{DDOUT} = 3 V, I _{OL} = 0.1 mA V _{DDOUT} = 3 V, I _{OL} = 8 mA V _{DDOUT} = 3 V, I _{OL} = 12 mA PLL bypass V _{DDOUT} = 3.3 V (20%–80%) 1 PLL switching, Y2-to-Y3 1 PLL switching, Y2-to-Y3 f _{OUT} = 50 MHz; Y1-to-Y3 f _{VCO} = 100 MHz; Pdiv = 1		0.6 50	0.5	ns
opagation delay se and fall time role-to-cycle jitter ^{(2) (3)} sak-to-peak period jitter ⁽³⁾ stput skew ⁽⁴⁾ , See Table 7-2 stput duty cycle ⁽⁵⁾ CMOS PARAMETER for V _{DDOUT} = 2	V _{DDOUT} = 3 V, I _{OL} = 8 mA V _{DDOUT} = 3 V, I _{OL} = 12 mA PLL bypass V _{DDOUT} = 3.3 V (20%–80%) 1 PLL switching, Y2-to-Y3 1 PLL switching, Y2-to-Y3 f _{OUT} = 50 MHz; Y1-to-Y3 f _{VCO} = 100 MHz; Pdiv = 1 2.5 V – MODE	45%	0.6 50	0.5	ns
opagation delay se and fall time role-to-cycle jitter ^{(2) (3)} sak-to-peak period jitter ⁽³⁾ stput skew ⁽⁴⁾ , See Table 7-2 stput duty cycle ⁽⁵⁾ CMOS PARAMETER for V _{DDOUT} = 2	V _{DDOUT} = 3 V, I _{OL} = 12 mA PLL bypass V _{DDOUT} = 3.3 V (20%–80%) 1 PLL switching, Y2-to-Y3 1 PLL switching, Y2-to-Y3 f _{OUT} = 50 MHz; Y1-to-Y3 f _{VCO} = 100 MHz; Pdiv = 1 2.5 V – MODE	45%	0.6 50	0.8	ns
se and fall time role-to-cycle jitter ^{(2) (3)} eak-to-peak period jitter ⁽³⁾ utput skew ⁽⁴⁾ , See Table 7-2 utput duty cycle ⁽⁵⁾ CMOS PARAMETER for V _{DDOUT} = 2	PLL bypass V _{DDOUT} = 3.3 V (20%–80%) 1 PLL switching, Y2-to-Y3 1 PLL switching, Y2-to-Y3 f _{OUT} = 50 MHz; Y1-to-Y3 f _{VCO} = 100 MHz; Pdiv = 1 2.5 V – MODE	45%	0.6 50		
se and fall time role-to-cycle jitter ^{(2) (3)} eak-to-peak period jitter ⁽³⁾ utput skew ⁽⁴⁾ , See Table 7-2 utput duty cycle ⁽⁵⁾ CMOS PARAMETER for V _{DDOUT} = 2	V _{DDOUT} = 3.3 V (20%–80%) 1 PLL switching, Y2-to-Y3 1 PLL switching, Y2-to-Y3 f _{OUT} = 50 MHz; Y1-to-Y3 f _{VCO} = 100 MHz; Pdiv = 1 2.5 V – MODE	45%	0.6 50	70	
ccle-to-cycle jitter ^{(2) (3)} cak-to-peak period jitter ⁽³⁾ utput skew ⁽⁴⁾ , See Table 7-2 utput duty cycle ⁽⁵⁾ CMOS PARAMETER for V _{DDOUT} = 2	1 PLL switching, Y2-to-Y3 1 PLL switching, Y2-to-Y3 f _{OUT} = 50 MHz; Y1-to-Y3 f _{VCO} = 100 MHz; Pdiv = 1 2.5 V – MODE	45%	50	70	ns
eak-to-peak period jitter ⁽³⁾ utput skew ⁽⁴⁾ , See Table 7-2 utput duty cycle ⁽⁵⁾ CMOS PARAMETER for V _{DDOUT} = 2	1 PLL switching, Y2-to-Y3 f _{OUT} = 50 MHz; Y1-to-Y3 f _{VCO} = 100 MHz; Pdiv = 1 2.5 V – MODE	45%		70	
utput skew ⁽⁴⁾ , See Table 7-2 utput duty cycle ⁽⁵⁾ CMOS PARAMETER for V _{DDOUT} = 2	f _{OUT} = 50 MHz; Y1-to-Y3 f _{VCO} = 100 MHz; Pdiv = 1 2.5 V – MODE	45%	60		ps
utput duty cycle (5) CMOS PARAMETER for V _{DDOUT} = 2	f _{VCO} = 100 MHz; Pdiv = 1	45%		100	ps
CMOS PARAMETER for V _{DDOUT} = 2	2.5 V – MODE	45%		60	ps
	T			55%	
	T				
CMOS high-level output voltage	$V_{DDOUT} = 2.3 \text{ V}, I_{OH} = -0.1 \text{ mA}$	2.2			
	V _{DDOUT} = 2.3 V, I _{OH} = -6 mA	1.7			V
	V _{DDOUT} = 2.3 V, I _{OH} = -10 mA	1.6			
				0.1	
CMOS low-level output voltage				0.5	V
, ,					
opagation delay			3.6		ns
<u> </u>	•				ns
				70	ps
	•				ps
<u> </u>	<u> </u>				ps
		45%			
	T	1.6			
CMOS high-level output voltage					V
omoo mgir ioroi oaqaa ronago					•
				0.1	
CMOS low-level output voltage					V
omoo low lovel output voltage					•
onagation delay			2.6	0.0	ns
<u> </u>	•				ns
				110	ps
• •	ļ				-
	U,		100		ps
<u> </u>		AE0/.			ps
1 7 7	100 - 100 Wil 12, Fully - 1	4070		3370	
	V 1 7 V I - 10 m ⁴			4.0	
					V
<u> </u>	v _I = v _{DD} ; v _{DD} = 1.9 v	0.7		±10	μA
		U./ × V _{DD}		0.0	V
· · · · · · · · · · · · · · · · · · ·				$0.3 \times V_{DD}$ $0.2 \times V_{DD}$	V
	CMOS low-level output voltage pagation delay se and fall time cle-to-cycle jitter ⁽²⁾ (3) ak-to-peak period jitter ⁽³⁾ ttput skew ⁽⁴⁾ , See Table 7-2 ttput duty cycle ⁽⁵⁾ VCMOS PARAMETER for VDDOUT CMOS high-level output voltage CMOS low-level output voltage CMOS low-level output voltage pagation delay se and fall time cle-to-cycle jitter ⁽²⁾ (3) ak-to-peak period jitter ⁽³⁾ ttput skew ⁽⁴⁾ , See Table 7-2 ttput duty cycle ⁽⁵⁾ METER CL and SDA input clamp voltage CL and SDA input current DA/SCL input low voltage ⁽⁶⁾ DA/SCL input low voltage ⁽⁶⁾ DA low-level output voltage	V_DDOUT = 2.3 V, I_OL = 10 mA	CMOS low-level output voltage Vodout	Variable Variable	CMOS low-level output voltage VoDout = 2.3 V, IoL = 6 mA 0.5

www.ti.com

over recommended operating free-air temperature range (unless otherwise noted)

	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
SCL/SDA input capacitance	$V_I = 0 \text{ V or } V_{DD}$		3	10	pF

- All typical values are at respective nominal V_{DD}.
- (2) 10,000 cycles.
- Jitter depends on configuration. Jitter data is for input frequency = 27 MHz, f_{VCO} = 108 MHz, f_{OUT} = 27 MHz (measured at Y2).
- The tsk(o) specification is only valid for equal loading of each bank of outputs, and the outputs are generated from the same divider.
- odc depends on output rise and fall time (t_r/t_f); data sampled on rising edge (t_r)
- SDA and SCL pins are 3.3-V tolerant.

5.6 EEPROM Specification

		MIN	TYP	MAX	UNIT
EEcyc	Programming cycles of EEPROM	100	1000		cycles
EEret	Data retention	10			years

5.7 Timing Requirements: CLK_IN

over recommended ranges of supply voltage, load, and operating free-air temperature

			MIN	NOM MAX	UNIT
_	LVCMOS clock input frequency	PLL bypass mode	0	160	MHz
† _{CLK}		PLL mode	8	160	
t _r / t _f	Rise and fall time CLK signal (20% to	80%)		3	ns
	Duty cycle CLK at V _{DD} /2		40%	60%	

5.8 Timing Requirements: SDA/SCL (1)

		STAND/ MOD		FAST MODE		UNIT
		MIN	MAX	MIN	MAX	
f _{SCL}	SCL clock frequency	0	100	0	400	kHz
t _{su(START)}	START setup time (SCL high before SDA low)	4.7		0.6		μs
t _{h(START)}	START hold time (SCL low after SDA low)	4		0.6		μs
t _{w(SCLL)}	SCL low-pulse duration	4.7		1.3		μs
t _{w(SCLH)}	SCL high-pulse duration	4		0.6		μs
t _{h(SDA)}	SDA hold time (SDA valid after SCL low)	0	3.45	0	0.9	μs
t _{su(SDA)}	SDA setup time	250		100		ns
t _r	SCL/SDA input rise time		1000		300	ns
t _f	SCL/SDA input fall time		300		300	ns
t _{su(STOP)}	STOP setup time	4		0.6		μs
t _{BUS}	Bus free time between a STOP and START condition	4.7		1.3		μs

(1) See Figure 7-8

5.9 Typical Characteristics

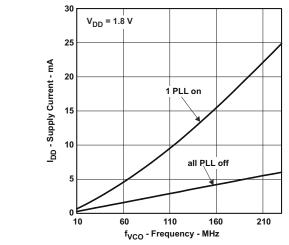


Figure 5-1. CDCE913, CDCEL913 Supply Current vs PLL Frequency

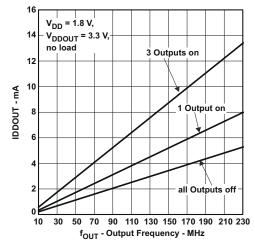


Figure 5-2. CDCE913 Output Current vs Output Frequency

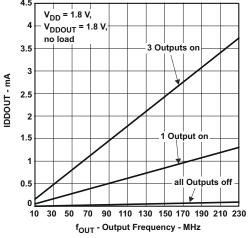


Figure 5-3. CDCEL913 Output Current vs Output Frequency

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

6 Parameter Measurement Information

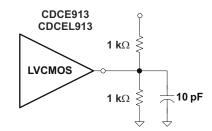


Figure 6-1. Test Load

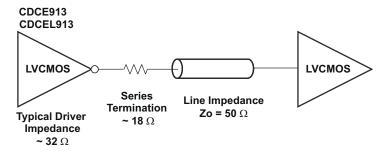


Figure 6-2. Test Load for $50-\Omega$ Board Environment

7 Detailed Description

7.1 Overview

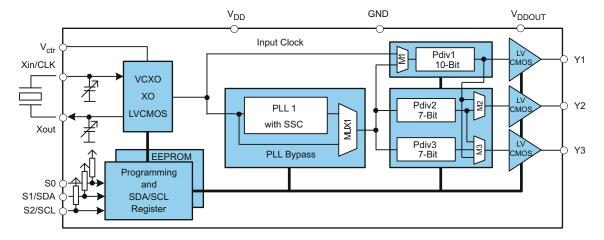
The CDCE913 and CDCEL913 devices are modular PLL-based, low-cost, high-performance, programmable clock synthesizers, multipliers, and dividers. The devices generate up to three output clocks from a single input frequency. Each output can be programmed in-system for any clock frequency up to 230 MHz, using the integrated configurable PLL.

The CDCx913 has separate output supply pins, V_{DDOUT} , which is 1.8 V for CDCEL913 and 2.5 V to 3.3 V for CDCE913.

The input accepts an external crystal or LVCMOS clock signal. If an external crystal is used, an on-chip load capacitor is adequate for most applications. The value of the load capacitor is programmable from 0 to 20 pF. Additionally, a selectable on-chip VCXO allows synchronization of the output frequency to an external control signal, that is, the PWM signal.

The deep M/N divider ratio allows the generation of zero-ppm audio/video, networking (WLAN, Bluetooth, Ethernet, GPS) or interface (USB, IEEE1394, memory stick) clocks from, for example, a 27-MHz reference input frequency.

The PLL supports spread-spectrum clocking (SSC). SSC can be center-spread or down-spread clocking, which is a common technique to reduce electromagnetic interference (EMI).


Based on the PLL frequency and the divider settings, the internal loop filter components are automatically adjusted to achieve high stability and optimized jitter transfer characteristics.

The device supports nonvolatile EEPROM programming for easy customization of the device to the application. The device is preset to a factory default configuration (see *Default Device Configuration*) that can be reprogrammed to a different application configuration before PCB assembly, or reprogrammed by in-system programming. All device settings are programmable through the SDA/SCL bus, a 2-wire serial interface.

Three programmable control inputs, S0, S1, and S2, can be used to select different frequencies, change SSC setting for lowering EMI, or control other features like outputs disable to low, outputs 3-state, power down, PLL bypass, and so forth).

The CDCx913 operates in a 1.8-V environment. The device operates in a temperature range of –40° C to 85° C.

7.2 Functional Block Diagram

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

7.3 Feature Description

7.3.1 Control Terminal Configuration

The CDCE913 or CDCEL913 has three user-definable control terminals (S0, S1, and S2), which allow external control of device settings. The devices can be programmed to any of the following functions:

- Spread-spectrum clocking selection → spread type and spread amount selection
- Frequency selection → switching between any of two user-defined frequencies
- Output state selection → output configuration and power-down control

The user can predefine up to eight different control settings. Table 7-1 and Table 7-2 explain these settings.

Table 7-1. Control Terminal Definition

EXTERNAL CONTROL BITS		PLL1 SETTING	Y1 SETTING	
Control function	PLL frequency selection	SSC selection	Output Y2/Y3 selection	Output Y1 and power-down selection

Table 7-2. PLLx Setting (Can Be Selected for Each PLL Individually) (1)

<u> </u>		• ,					
SSCx [3 Bits]		CENTER	DOWN				
SSC SELECTION (CENTER/DOWN)							
0	0	0% (off)	0% (off)				
0	1	±0.25%	-0.25%				
1	0	±0.5%	-0.5%				
1	1	±0.75%	-0.75%				
0	0	±1.0%	-1.0%				
0	1	±1.25%	-1.25%				
1	0	±1.5%	-1.5%				
1	1	±2.0%	-2.0%				
	SSCx [3 Bits]	SSCx [3 Bits] CENTER/DOWN) 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 1	SSCx [3 Bits] CENTER CENTER/DOWN) 0 0 0% (off) 0 1 ±0.25% 1 0 ±0.5% 1 1 ±0.75% 0 0 ±1.0% 0 1 ±1.25% 1 0 ±1.5%				

 Center-spread/down-spread, Frequency0/Frequency1 and State0/State1 are user-definable in PLLx configuration register.

Table 7-3. PLLx Setting, Frequency Selection (Can Be Selected for Each PLL Individually) (1)

FSx	FUNCTION
0	Frequency0
1	Frequency1

(1) Frequency0 and Frequency1 can be any frequency within the specified f_{VCO} range.

Table 7-4. PLLx Setting, Output Selection (1) (Y2 ... Y3)

YxYx	FUNCTION
0	State0
1	State1

 State0/State1 selection is valid for both outputs of the corresponding PLL module and can be power down, 3-state, low, or active.

Table 7-5. Y1 Setting (1)

Y1 SELECTION					
Y1 FUNCTION					
0	State 0				
1	State 1				

 State0 and State1 are user definable in the generic configuration register and can be power down, 3-state, low, or active. S1/SDA and S2/SCL pins of the CDCE913 or CDCEL913 are dual-function pins. In the default configuration, the pins are defined as SDA/SCL for the serial programming interface. The pins can be programmed as control pins (S1/S2) by setting the appropriate bits in the EEPROM. Changes to the control register (Bit [6] of byte 02h) have no effect until the pins are written into the EEPROM.

After the S1/SDA and S2/SCL pins are set as control pins, the serial programming interface is no longer available. However, if V_{DDOLIT} is forced to GND, the two control pins, S1 and S2, temporally act as serial programming pins (SDA/SCL).

S0 is **not** a multi-use pin. S0 is a control pin only.

7.3.2 Default Device Configuration

The internal EEPROM of the CDCE913 or CDCEL913 is preconfigured with a factory default configuration, as shown in Figure 7-1 (The input frequency is passed through the output as a default). This preconfiguration allows the device to operate in default mode without the extra production step of programming. The default setting appears after power is supplied or after a power-down-power-up sequence, until the device is reprogrammed by the user to a different application configuration. A new register setting is programmed through the serial SDA/SCL interface.

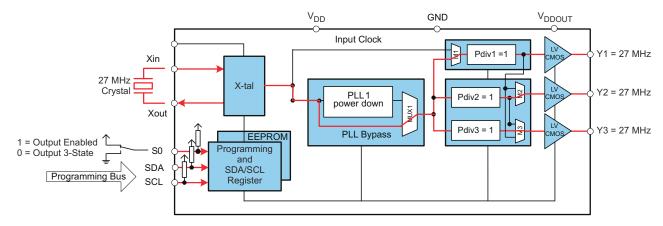


Figure 7-1. Default Configuration

Table 7-6 shows the factory default setting for the Control Terminal register. Though eight different register settings are possible, in the default configuration, only the first two settings (0 and 1) can be selected with S0, as S1 and S2 are configured as programming pins in default mode.

				<u> </u>				
			Y1	PLL1 SETTINGS				
EXTERNA	L CONTROL P	INS	OUTPUT SELECTION	FREQUENCY SSC OUTF SELECTION SELECTION SELEC				
S2	S1	S0	Y1	FS1	SSC1	Y2Y3		
SCL (I ² C)	SDA (I ² C)	0	3-state	f _{VCO1_0}	off	3-state		
SCL (I ² C)	SDA (I ² C)	1	Enabled	f _{VCO1_0}	off	Enabled		

Table 7-6. Factory Default Setting for Control Terminal Register (1)

7.3.3 SDA/SCL Serial Interface

The CDCE913 or CDCEL913 operates as a target device of the 2-wire serial SDA/SCL bus, compatible with the popular SMBus or I²C specification. The devices operate in the standard-mode transfer (up to 100 kbps) and fast-mode transfer (up to 400 kbps) and supports 7-bit addressing.

Product Folder Links: CDCE913 CDCEL913

In default mode or when programmed respectively, S1 and S2 act as serial programming interface, SDA/SCL. S1 and S2 do not have any control-pin function but are internally interpreted as if S1 = 0 and S2 = 0. S0, however, is a control pin, which in the default mode switches all outputs ON or OFF (as previously predefined).

The S1/SDA and S2/SCL pins of the CDCE913 and CDCEL913 are dual function pins. In the default configuration, the pins are used as the SDA/SCL serial programming interface. The pins can be reprogrammed as general-purpose control pins, S1 and S2, by changing the corresponding EEPROM setting, byte **02h**, bit **[6]**.

7.3.4 Data Protocol

The device supports Byte Write and Byte Read and Block Write and Block Read operations.

For Byte Write/Read operations, the system controller can individually access addressed bytes.

For *Block Write/Read* operations, the bytes are accessed in sequential order from lowest to highest byte (with most-significant bit first) with the ability to stop after any complete byte has been transferred. The numbers of bytes read out are defined by Byte Count in the generic configuration register. At the *Block Read* instruction, all bytes defined in Byte Count must be read out to finish the read cycle correctly.

After a byte has been sent, the byte is written into the internal register and is effective immediately. This applies to each transferred byte, regardless of whether this is a *Byte Write* or a *Block Write* sequence.

If the EEPROM write cycle is initiated, the internal registers are written into the EEPROM. Data can be read out during the programming sequence (*Byte Read* or *Block Read*). The programming status can be monitored by *EEPIP*, byte 01h–bit 6. Before beginning EEPROM programming, pull CLKIN LOW. CLKIN must be held LOW for the duration of EEPROM programming. After initiating EEPROM programming with *EEWRITE*, byte 06h-bit 0, do not write to the device registers until *EEPIP* is read back as a 0.

The offset of the indexed byte is encoded in the command code, as described in Table 7-8.

DEVICE A1⁽¹⁾ A0⁽¹⁾ R/W A6 **A5** Α4 **A3** A2 CDCE913/CDCEL913 1 1 0 0 1 0 1/0 CDCE925/CDCEL925 1 1 n 0 1 0 0 1/0 CDCE937/CDCEL937 0 1 1 1 0 1 1/0 1 CDCE949/CDCEL949 1 1 0 1 1 1/0 0

Table 7-7. Target Receiver Address (7 Bits)

7.4 Device Functional Modes

7.4.1 SDA/SCL Hardware Interface

Figure 7-2 shows how the CDCE913 or CDCEL913 clock synthesizer is connected to the SDA/SCL serial interface bus. Multiple devices can be connected to the bus, but reducing the speed (400 kHz is the maximum) can be necessary if many devices are connected.

Note that the pullup resistors (R_P) depend on the supply voltage, bus capacitance, and number of connected devices. The recommended pullup value is 4.7 k Ω . The pullup value must meet the minimum sink current of 3 mA at V_{OI} max = 0.4 V for the output stages (for more details see the SMBus or I²C Bus specification).

⁽¹⁾ Address bits A0 and A1 are programmable through the SDA/SCL bus (byte **01**, bits [**1:0**]. This allows addressing up to 4 devices connected to the same SDA/SCL bus. The least-significant bit of the address byte designates a write or read operation.

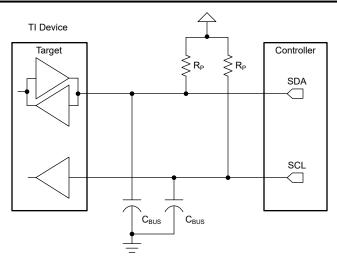


Figure 7-2. SDA / SCL Hardware Interface

7.5 Programming

Table 7-8. Command Code Definition

BIT	DESCRIPTION
7	0 = Block Read or Block Write operation 1 = Byte Read or Byte Write operation
(6:0)	Byte offset for Byte Read, Block Read, Byte Write, and Block Write operations

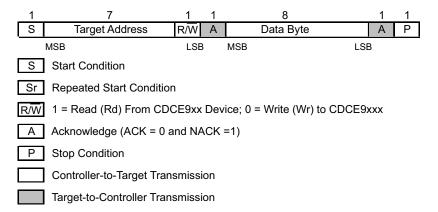


Figure 7-3. Generic Programming Sequence

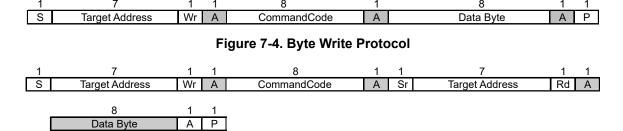


Figure 7-5. Byte Read Protocol

Product Folder Links: CDCE913 CDCEL913

1	7	1	1 8		1	8	1		
S	Target Address	Wr	A CommandCode	;	Α	Byte Count = N	Α		
	8	1	8	1		8		1	1
	Data Byte 0	Α	Data Byte 1	Α		Data Byte N-1		Α	Р

A. Data byte 0 bits [7:0] is reserved for Revision Code and Vendor Identification. Also, Data byte 0 is used for internal test purpose and must not be overwritten.

Figure 7-6. Block Write Protocol

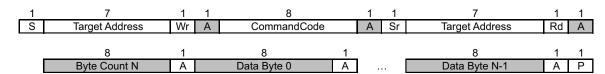


Figure 7-7. Block Read Protocol

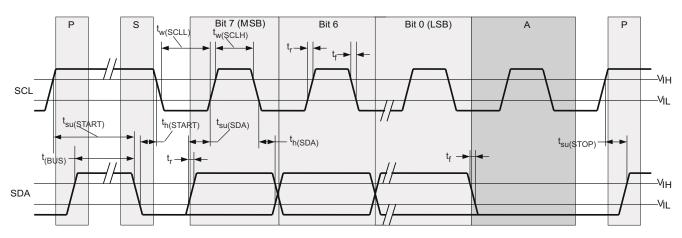


Figure 7-8. Timing Diagram for SDA/SCL Serial Control Interface

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

The CDCE913 device is an easy-to-use high-performance, programmable CMOS clock synthesizer. The device can be used as a crystal buffer, clock synthesizer with separate output supply pin. The CDCE913 features an on-chip loop filter and Spread-spectrum modulation. Programming can be done through I²C, pin-mode, or using on-chip EEPROM. This section shows some examples of the CDCE913 in various applications.

8.2 Typical Application

Figure 8-1 shows the use of the CDCEL913 in an audio/video application using a 1.8-V single supply.

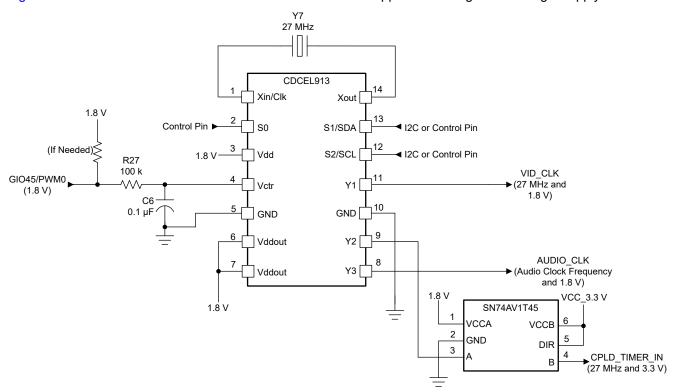
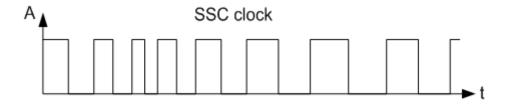


Figure 8-1. Single-Chip Solution Using CDCE913 for Generating Audio/Video Frequencies

Product Folder Links: CDCE913 CDCEL913


8.2.1 Design Requirements

CDCE913 supports spread spectrum clocking (SSC) with multiple control parameters:

- Modulation amount (%)
- Modulation frequency (>20 kHz)
- Modulation shape (triangular, Hershey, and others)
- Center spread / down spread (± or –)

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated

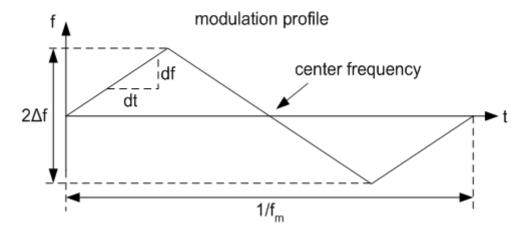
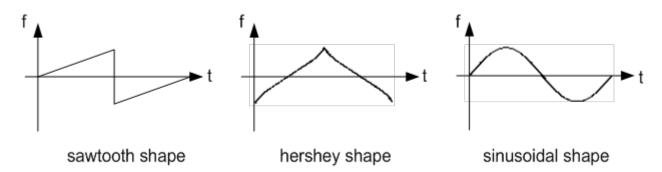
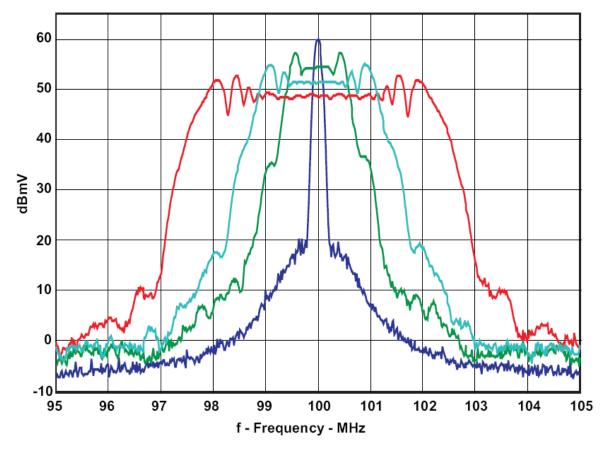


Figure 8-2. Modulation Frequency (fm) and Modulation Amount




Figure 8-3. Spread Spectrum Modulation Shapes

8.2.2 Detailed Design Procedure

8.2.2.1 Spread-Spectrum Clock (SSC)

Spread-spectrum modulation is a method to spread emitted energy over a larger bandwidth. In clocking, spread spectrum can reduce Electromagnetic Interference (EMI) by reducing the level of emission from clock distribution network.

CDCS502 with a 25-MHz Crystal, FS = 1, Fout = 100 MHz, and 0%, ±0.5, ±1%, and ±2% SSC

Figure 8-4. Comparison Between Typical Clock Power Spectrum and Spread-Spectrum Clock

8.2.2.2 PLL Frequency Planning

At a given input frequency (f_{IN}), use Equation 1 to calculate the output frequency (f_{OUT}) of the CDCE913 or CDCEL913 device.

$$f_{\text{OUT}} = \frac{f_{\text{IN}}}{\text{Pdiv}} \times \frac{N}{M} \tag{1}$$

where

- M (1 to 511) and N (1 to 4095) are the multiplier/divide values of the PLL
- Pdiv (1 to 127) is the output divider

Use Equation 2 to calculate the target VCO frequency (f_{VCO}) of each PLL.

$$f_{\text{VCO}} = f_{\text{IN}} \times \frac{N}{M} \tag{2}$$

The PLL internally operates as fractional divider and requires the following multiplier/divider settings:

- $P = 4 int(log_2N/M)$; if P < 0 then P = 0
- Q = int(N'/M)
- $R = N' M \times Q$

where

 $N' = N \times 2^{P}$ $N \ge M$; $80 \text{ MHz} \le f_{VCO} \le 230 \text{ MHz}$ $16 \le Q \le 63$ $0 \le P \le 4$ $0 \le R \le 51$

Example:

for
$$f_{\text{IN}}$$
 = 27 MHz; M = 1; N = 4; Pdiv = 2
 \rightarrow f_{OUT} = 54 MHz
 \rightarrow f_{VCO} = 108 MHz
 \rightarrow P = 4 - int(log₂4) = 4 - 2 = 2
 \rightarrow N' = 4 × 2² = 16
 \rightarrow Q = int(16) = 16
 \rightarrow R = 16 - 16 = 0
for f_{IN} = 27 MHz; M = 2; N = 11; Pdiv = 2
 \rightarrow f_{OUT} = 74.25 MHz
 \rightarrow f_{VCO} = 148.50 MHz
 \rightarrow P = 4 - int(log₂5.5) = 4 - 2 = 2
 \rightarrow N' = 11 × 2² = 44
 \rightarrow Q = int(22) = 22
 \rightarrow R = 44 - 44 = 0

The values for P, Q, R, and N' are automatically calculated when using TI Pro-Clock™ software.

8.2.2.3 Crystal Oscillator Start-up

When the CDCE913 or CDCEL913 is used as a crystal buffer, crystal oscillator start-up dominates the start-up time compared to the internal PLL lock time. The following diagram shows the oscillator start-up sequence for a 27-MHz crystal input with an 8-pF load. The start-up time for the crystal is in the order of approximately 250 μ s compared to approximately 10 μ s of lock time. In general, lock time is an order of magnitude less compared to the crystal start-up time.

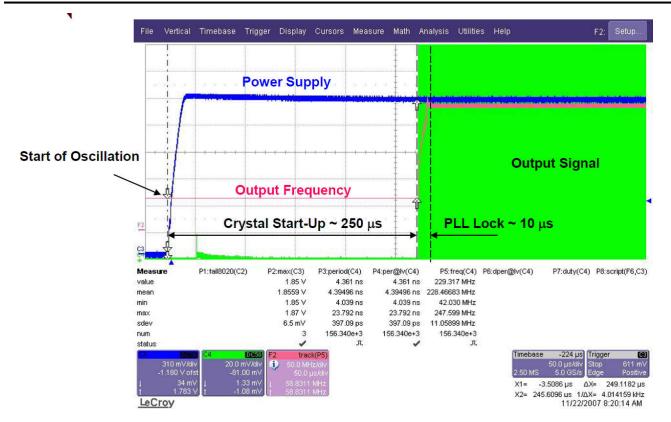


Figure 8-5. Crystal Oscillator Start-Up vs PLL Lock Time

8.2.2.4 Frequency Adjustment with Crystal Oscillator Pulling

The frequency for the CDCE913 or CDCEL913 is adjusted for media and other applications with the VCXO control input V_{Ctrl} . If a PWM-modulated signal is used as a control signal for the VCXO, an external filter is needed.

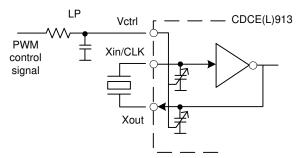


Figure 8-6. Frequency Adjustment Using PWM Input to the VCXO Control

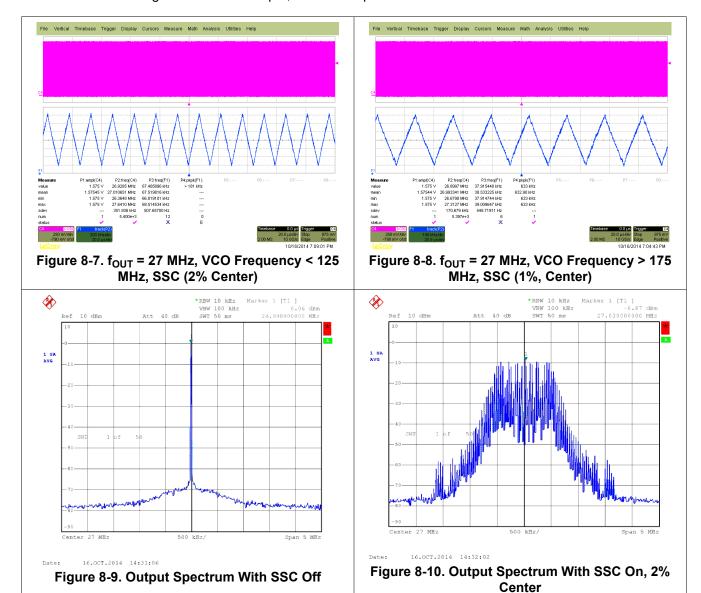
8.2.2.5 Unused Inputs/Outputs

If VCXO pulling functionality is not required, V_{Ctrl} must be left floating. All other unused inputs must be set to GND. Unused outputs must be left floating.

If one output block is not used, TI recommends disabling the block. However, TI always recommends providing the supply for the second output block even if the block is disabled.

Submit Document Feedback

Copyright © 2024 Texas Instruments Incorporated


8.2.2.6 Switching Between XO and VCXO Mode

When the CDCE(L)913 is in crystal oscillator or in VCXO configuration, the internal capacitors require different internal capacitance. The following steps are recommended to switch to VCXO mode when the configuration for the on-chip capacitor is still set for XO mode. To center the output frequency to 0 ppm:

- 1. While in XO mode, put Vctrl = Vdd/2
- 2. Switch from X0 mode to VCXO mode
- 3. Program the internal capacitors to obtain 0 ppm at the output.

8.2.3 Application Curves

Figure 8-7, Figure 8-8, Figure 8-9, and Figure 8-10 show CDCE913 measurements with the SSC feature enabled. Device Configuration: 27-MHz input, 27-MHz output.

8.3 Power Supply Recommendations

When using an external reference clock, XIN/CLK must be driven before V_{DD} ramps to avoid risk of unstable output. If V_{DDOUT} is applied before V_{DD} , TI recommends keeping V_{DD} pulled to GND until V_{DDOUT} is ramped. In case the V_{DDOUT} is powered while V_{DD} is floating, there is a risk of high current flowing on the V_{DDOUT} .

The device has a power-up control that is connected to the 1.8-V supply. This disables the entire device until the 1.8-V supply reaches a sufficient voltage level. Then, the device switches on all internal components, including the outputs. If there is a 3.3-V V_{DDOUT} available before the 1.8-V, the outputs stay disabled until the 1.8-V supply reaches a certain level.

8.4 Layout

8.4.1 Layout Guidelines

When the CDCE913 is used as a crystal buffer, any parasitics across the crystal affects the pulling range of the VCXO. Therefore, take care placing the crystal units on the board. Crystals must be placed as close to the device as possible, verifying that the routing lines from the crystal terminals to XIN and XOUT have the same length.

If possible, cut out both ground plane and power plane under the area where the crystal and the routing to the device are placed. In this area, always avoid routing any other signal line to avoid adding a source of noise coupling.

Additional discrete capacitors can be required to meet the load capacitance specification of certain crystal. For example, a 10.7-pF load capacitor is not fully programmable on the chip, because the internal capacitor can range from 0 pF to 20 pF with steps of 1 pF. The 0.7-pF capacitor therefore can be discretely added on top of an internal 10-pF capacitor.

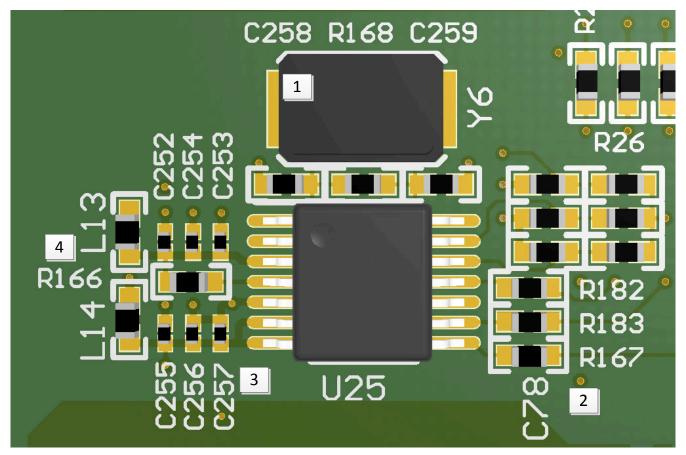

To minimize the inductive influence of the trace, TI recommends placing this small capacitor as close to the device as possible and symmetrically with respect to XIN and XOUT.

Figure 8-11 shows a conceptual layout detailing recommended placement of power supply bypass capacitors. For component side mounting, use 0402 body size capacitors to facilitate signal routing. Keep the connections between the bypass capacitors and the power supply on the device as short as possible. Ground the other side of the capacitor using a low-impedance connection to the ground plane.

Product Folder Links: CDCE913 CDCEL913

8.4.2 Layout Example

- Place crystal with associated load caps as close to the chip
- Place series termination resistors at Clock outputs to improve signal integrity
- Place bypass caps close to the device pins, ensure wide freq. range
- Use ferrite beads to isolate the device supply pins from board noise sources

Figure 8-11. Annotated Layout

9 Register Maps

9.1 SDA/SCL Configuration Registers

The clock input, control pins, PLLs, and output stages are user configurable. The following tables and explanations describe the programmable functions of the CDCE913 or CDCEL913. All settings can be manually written into the device through the SDA/SCL bus or easily programmed by using the TI Pro-Clock™ software. TI Pro-Clock™ software allows the user to quickly make all settings and automatically calculates the values for optimized performance at lowest jitter.

Table 9-1. SDA/SCL Registers

ADDRESS OFFSET	REGISTER DESCRIPTION	TABLE	
00h	Generic configuration register	Table 9-3	
10h	PLL1 configuration register	Table 9-4	

The grey-highlighted bits, described in the configuration register tables in the following pages, belong to the control terminal register. The user can predefine up to eight different control settings. These settings then can be selected by the external control pins, S0, S1, and S2. See *Control Terminal Configuration*.

Table 9-2. Configuration Register, External Control Terminals

				Y1	Y1 PLL1 Settings						
	EXTERNAL CONTROL PINS							OUTPUT SELECTION	FREQUENCY SELECTION	SSC SELECTION	OUTPUT SELECTION
	S2 S1 S0		S0	Y1	FS1	SSC1	Y2Y3				
0	0	0	0	Y1_0	FS1_0	SSC1_0	Y2Y3_0				
1	0	0	1	Y1_1	FS1_1	SSC1_1	Y2Y3_1				
2	0	1	0	Y1_2	FS1_2	SSC1_2	Y2Y3_2				
3	0	1	1	Y1_3	FS1_3	SSC1_3	Y2Y3_3				
4	1	0	0	Y1_4	FS1_4	SSC1_4	Y2Y3_4				
5	1	0	1	Y1_5	FS1_5	SSC1_5	Y2Y3_5				
6	1	1	0	Y1_6	FS1_6	SSC1_6	Y2Y3_6				
7	1	1	1	Y1_7	FS1_7	SSC1_7	Y2Y3_7				
	Addr	ess offs	et ⁽¹⁾	04h	13h	10h-12h	15h				

⁽¹⁾ Address offset refers to the byte address in the configuration register in Table 9-3 and Table 9-4.

Product Folder Links: CDCE913 CDCEL913

Table 9-3. Generic Configuration Register

OFFOFT	rable 9-3. Generic Configuration Register											
OFFSET (1)	BIT ⁽²⁾	ACRONYM	DEFAULT ⁽³⁾	DESCRIPTION								
	7	E_EL	Xb	Device identification (read-only): 1 is CDCE913 (3.3 V out), 0 is CDCEL913 (1.8 V out)								
00h	6:4	RID	Xb	Revision identification number (read-only)								
	3:0	VID	1h	Vendor identification number (read-only)								
	7	_	0b	Reserved – always write 0								
	6	EEPIP	0b	EEPROM programming Status4: ⁽⁴⁾ (read-only) 0 – EEPROM programming is completed. 1 – EEPROM is in programming mode.								
	5	EELOCK	0b	Permanently lock EEPROM data ⁽⁵⁾ 0 – EEPROM is not locked. 1 – EEPROM is permanently locked.								
01h	4	PWDN	0b	Device power down (overwrites S0/S1/S2 setting; configuration register settings are unchanged) Note: PWDN can not be set to 1 in the EEPROM. 0 – Device active (PLL1 and all outputs are enabled) 1 – Device power down (PLL1 in power down and all outputs in 3-state)								
	3:2	INCLK	00b	Input clock selection: 00 – Xtal 10 – LVCMOS								
	0.2	INOLIX	OOD	01 – VCXO 11 – Reserved								
	1:0	TARGET_A DR	01b	Address bits A0 and A1 of the target receiver address								
	7	M1	1b	Clock source selection for output Y1: 0 – Input clock 1 – PLL1 clock								
	6	SPICON	0b	Operation mode selection for pin 12/13 ⁽⁶⁾ 0 – Serial programming interface SDA (pin 13) and SCL (pin 12)								
				1 – Control pins S1 (pin 13) and S2 (pin 12)								
02h	5:4	Y1_ST1	11b	Y1-State0/1 definition								
	3:2	Y1_ST0	01b	00 – Device power down (all PLLs in power down and 10 – Y1 disabled to low all outputs in 3-State) 11 – Y1 enabled 01 – Y1 disabled to 3-state								
	1:0	Pdiv1 [9:8]		0 – Divider reset and stand-by								
03h	7:0	Pdiv1 [7:0]	001h	10-bit Y1-output-divider Pdiv1: 1 to 1023 – Divider value								
	7	Y1_7	0b									
	6	Y1_6	0b									
	5	Y1_5	0b									
	4	Y1_4	0b	0 – State0 (predefined by Y1 ST0)								
04h	3	Y1_3	0b	Y1_x State Selection ⁽⁷⁾ 1 – State1 (predefined by Y1_ST1)								
	2	Y1_2	0b									
	1	Y1_1	1b									
	0	Y1_0	0b									
05h	7:3	XCSEL	0Ah	Crystal load capacitor selection ⁽⁸⁾ 00h – 0 pF 01h – 1 pF 02h – 2 pF :14h to 1Fh – 20 pF								
	2:0		0b	Reserved – do not write other than 0								
	7:1	BCOUNT	20h	7-bit byte count (defines the number of bytes which is sent from this device at the next <i>Block Read</i> transfer); all bytes must be read out to finish the read cycle correctly.								
06h	0	EEWRITE	0b	0- No EEPROM write cycle Initiate EEPROM write cycle (4) (9) 1 - Start EEPROM write cycle (internal registers are saved to the EEPROM)								
07h-0Fh		_	0h	Unused address range								

- (1) Writing data beyond '20h can affect device function.
- (2) All data transferred with the MSB first
- (3) Unless customer-specific setting
- (4) During EEPROM programming, no data is allowed to be sent to the device through the SDA/SCL bus until the programming sequence is completed. Data, however, can be read out during the programming sequence (*Byte Read* or *Block Read*).
- (5) If this bit is set to high in the EEPROM, the actual data in the EEPROM is permanently locked. No further programming is possible. Data, however can still be written through the SDA/SCL bus to the internal register to change device function on the fly, but new data can no longer be saved to the EEPROM. EELOCK is effective only if written into the EEPROM.
- (6) Selection of *control pins* is effective only if written into the EEPROM. After the pins are written into the EEPROM, the serial programming pins are no longer available. However, if V_{DDOUT} is forced to GND, the two control pins, S1 and S2, temporarily act as serial programming pins (SDA/SCL), and the two target receiver address bits are reset to A0 = 0 and A1 = 0.

- (7) These are the bits of the control terminal register (see Table 9-2). The user can predefine up to eight different control settings. These settings then can be selected by the external control pins, S0, S1, and S2.
- (8) The internal load capacitor (C1, C2) must be used to achieve the best clock performance. External capacitors must be used only to finely adjust C_L by a few picofarads. The value of C_L can be programmed with a resolution of 1 pF for a crystal load range of 0 pF to 20 pF. For C_L > 20 pF, use additional external capacitors. The device input capacitance value must be considered, which always adds 1.5 pF (6 pF//2 pF) to the selected C_L. For more about VCXO configuration and crystal recommendation, see the VCXO Application Guideline for CDCE(L)9xx Family application note.
- (9) The EEPROM WRITE bit must be sent last. This verifies that the content of all internal registers are stored in the EEPROM. The EEWRITE cycle is initiated with the rising edge of the EEWRITE bit. A static level-high does not trigger an EEPROM WRITE cycle. The EEWRITE bit must be reset to low after the programming is completed. The programming status can be monitored by reading out EEPIP. If EELOCK is set to high, no EEPROM programming is possible.

Table 9-4. PLL1 Configuration Register

OFFSET(1)	BIT ⁽²⁾	ACRONYM	DEFAULT ⁽³⁾	DESCRIPTION
	7:5	SSC1_7 [2:0]	000b	SSC1: PLL1 SSC selection (modulation amount). (4)
10h	4:2	SSC1_6 [2:0]	000b	Down Center
	1:0	SSC1_5 [2:1]		000 (off) 000 (off)
	7	SSC1_5 [0]	- 000b	001 - 0.25% 001 ± 0.25% 010 - 0.5% 010 ± 0.5%
	6:4	SSC1_4 [2:0]	000b	011 – 0.75% 011 ± 0.75%
11h	3:1	SSC1_3 [2:0]	000b	100 – 1.0% 101 – 1.25% 101 ± 1.25%
	0	SSC1_2 [2]		110 – 1.5% 110 ± 1.5%
	7:6	SSC1_2 [1:0]	- 000b	111 – 2.0% 111 ± 2.0%
12h	5:3	SSC1_1 [2:0]	000b	
	2:0	SSC1_0 [2:0]	000b	
	7	FS1 7	0b	FS1_x: PLL1 frequency selection (4)
	6	 FS1 6	0b	_ ' '
	5	 FS1_5	0b	
	4	FS1_4	0b	
13h	3	FS1_3	0b	0 – f _{VCO1_0} (predefined by PLL1_0 – multiplier/divider value) 1 – f _{VCO1_1} (predefined by PLL1_1 – multiplier/divider value)
	2	FS1_2	0b	1 – 1/CO1_1 (predefitted by FLE1_1 – Ittititiplier/divider value)
	1	FS1_1	0b	
	0	FS1_0	0b	
14h	7	MUX1	1b	PLL1 multiplexer: 0 – PLL1 1 – PLL1 bypass (PLL1 is in power down)
	6	M2	1b	Output Y2 multiplexer: 0 - Pdiv1 1 - Pdiv2
	5:4	М3	10b	Output Y3 Multiplexer: 00 - Pdiv1-divider 01 - Pdiv2-divider 10 - Pdiv3-divider 11 - Reserved
	3:2	Y2Y3_ST1	11b	00 – Y2/Y3 disabled to 3-state (PLL1 is in power down)
	1:0	Y2Y3_ST0	01b	Y2, Y3- 01 – Y2/Y3 disabled to 3-State State0/1definition: 10–Y2/Y3 disabled to low 11 – Y2/Y3 enabled
	7	Y2Y3_7	0b	Y2Y3_x output state selection. ⁽⁴⁾
	6	Y2Y3_6	0b	
	5	Y2Y3_5	0b	
155	4	Y2Y3_4	0b	
15h	3	Y2Y3_3	0b	0 – State0 (predefined by Y2Y3_ST0) 1 – State1 (predefined by Y2Y3_ST1)
	2	Y2Y3_2	0b	
	1	Y2Y3_1	1b	
	0	Y2Y3_0	0b	

Product Folder Links: CDCE913 CDCEL913

Table 9-4. PLL1 Configuration Register (continued)

			• == .	Configuration Register	(001101101010)				
OFFSET ⁽¹⁾	BIT ⁽²⁾	ACRONYM	DEFAULT ⁽³⁾		DESCRIPTION				
16h	7	SSC1DC	0b	PLL1 SSC down/center selection:	0 – Down 1 – Center				
1011	6:0	Pdiv2	01h	7-bit Y2-output-divider Pdiv2:	0 – Reset and stand-by 1 to 127 – Divider value				
	7	_	0b	Reserved – do not write others than	n 0				
17h	6:0	Pdiv3	01h	7-bit Y3-output-divider Pdiv3:	0 – Reset and stand-by 1 to 127 – Divider value				
18h	7:0	PLL1_0N [11:4]	004h						
19h	7:4	PLL1_0N [3:0]	00411	PLL1_0 ⁽⁵⁾ : 30-bit multiplier/divider value for frequency f _{VCO1_0} (for more information, see the <i>PLL Multiplier/Divider Definition</i> paragraph).					
1911	3:0	PLL1_0R [8:5]	000h						
1Ah	7:3	PLL1_0R[4:0]	00011						
IAII	2:0	PLL1_0Q [5:3]	10h						
	7:5	PLL1_0Q [2:0]	1011						
	4:2	PLL1_0P [2:0]	010b						
1Bh	1:0	VCO1_0_RANGE	00b	f _{VCO1_0} range selection:	00 − f_{VCO1_0} < 125 MHz 01 − 125 MHz ≤ f_{VCO1_0} < 150 MHz 10 − 150 MHz ≤ f_{VCO1_0} < 175 MHz 11 − f_{VCO1_0} ≥ 175 MHz				
1Ch	7:0	PLL1_1N [11:4]	004h						
1Dh	7:4	PLL1_1N [3:0]	00411						
IDII	3:0	PLL1_1R [8:5]	000h						
1Eh	7:3	PLL1_1R[4:0]	00011	PLL1_1 ⁽⁵⁾ : 30-bit multiplier/divider v (for more information see the PLL N					
	2:0	PLL1_1Q [5:3]	10h		(ioi more anomadon oso dio i El mulupilon Dividor Dollindon).				
1Fh	7:5	PLL1_1Q [2:0]	1011						
	4:2	PLL1_1P [2:0]	010b						
	1:0	VCO1_1_RANGE	00b	f _{VCO1_1} range selection:	$00 - f_{VCO1_{-1}} < 125 \text{ MHz}$ $01 - 125 \text{ MHz} \le f_{VCO1_{-1}} < 150 \text{ MHz}$ $10 - 150 \text{ MHz} \le f_{VCO1_{-1}} < 175 \text{ MHz}$ $11 - f_{VCO1_{-1}} \ge 175 \text{ MHz}$				

- (1) Writing data beyond 20h can adversely affect device function.
- (2) All data is transferred MSB-first.
- (3) Unless a custom setting is used.
- (4) The user can predefine up to eight different control settings. In normal device operation, these settings can be selected by the external control pins, S0, S1, and S2.
- (5) PLL settings limits: $16 \le q \le 63$, $0 \le p \le 7$, $0 \le r \le 511$, 0 < N < 4096.

10 Device and Documentation Support

10.1 Documentation Support

10.1.1 Related Documentation

For related documentation, see the following:

Texas Instruments, VCXO Application Guideline for CDCE(L)9xx Family application note

10.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

10.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

10.4 Trademarks

Ethernet[™] is a trademark of Xerox Corporation.

DaVinci[™], OMAP[™], Pro-Clock[™], and TI E2E[™] are trademarks of Texas Instruments.

Bluetooth® is a registered trademark of Bluetooth SIG, Inc.

All trademarks are the property of their respective owners.

10.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

11 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision H (February 2024) to Revision I (August 2024) • Included links to Applications list. 1 • Updated footnote language to conform to updated TI Datasheet Guidelines throughout the Specifications section. 4 • Updated Power Supply Recommendations section with correct power sequence. 22

ebruary 2024)	Page
-references throughout the document	1
nd target where I ² C is mentioned	1
	1
	PROM write cycle in <i>Data Protocol</i>

Product Folder Links: CDCE913 CDCEL913

Changes from Revision F (April 2015) to Revision G (October 2016)	Page	
 Changed data sheet title from: CDCEx913 Programmable 1-PLL VCXO Clock Synthesizer With 1.8-V, 2. and 3.3-V Outputs to: CDCE(L)913: Flexible Low Power LVCMOS Clock Generator With SSC Support for EMI Poduction. 	port for	
EMI Reduction		
Changes from Revision E (March 2010) to Revision F (April 2015)	Page	
 Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	14	
• Changed under Example, fifth row, N", 2 places TO N'		
Changes from Revision D (October 2009) to Revision E (March 2010)	Page	
 Added PLL settings limits: 16≤q≤63, 0≤p≤7, 0≤r≤511 to PLL Multiplier/Divider Definition Section Added PLL settings limits: 16≤q≤63, 0≤p≤7, 0≤r≤511, 0<n<4096 configure="" foot="" li="" pll1="" register="" table<="" to=""> </n<4096>		

12 Mechanical, Packaging, and Orderable Information

Changes from Revision C (August 2007) to Revision D (October 2009)

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2024 Texas Instruments Incorporated

Page

www.ti.com 8-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status Material type Pac		Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
CDCE913PW	Active	Production	TSSOP (PW) 14	90 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CDCE913
CDCE913PW.B	Active	Production	TSSOP (PW) 14	90 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CDCE913
CDCE913PWG4	Active	Production	TSSOP (PW) 14	90 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CDCE913
CDCE913PWR	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CDCE913
CDCE913PWR.B	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CDCE913
CDCE913PWRG4	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CDCE913
CDCEL913PW	Active	Production	TSSOP (PW) 14	90 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CKEL913
CDCEL913PW.B	Active	Production	TSSOP (PW) 14	90 TUBE	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CKEL913
CDCEL913PWR	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CKEL913
CDCEL913PWR.B	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CKEL913
CDCEL913PWRG4	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CKEL913
CDCEL913PWRG4.B	Active	Production	TSSOP (PW) 14	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	CKEL913

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM

www.ti.com 8-Nov-2025

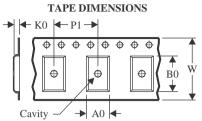
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CDCE913, CDCEL913:

Automotive: CDCE913-Q1, CDCEL913-Q1

NOTE: Qualified Version Definitions:


Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

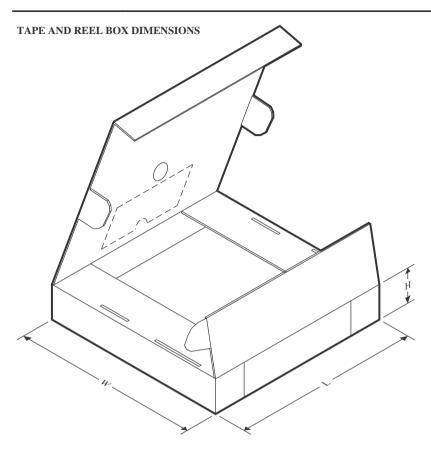
PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

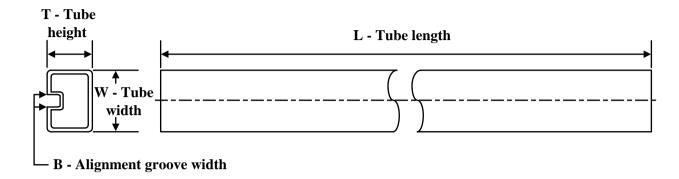


*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CDCE913PWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1
CDCEL913PWR	TSSOP	PW	14	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CDCE913PWR	TSSOP	PW	14	2000	353.0	353.0	32.0
CDCEL913PWR	TSSOP	PW	14	2000	353.0	353.0	32.0

PACKAGE MATERIALS INFORMATION

www.ti.com 24-Jul-2025

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
CDCE913PW	PW	TSSOP	14	90	530	10.2	3600	3.5
CDCE913PW.B	PW	TSSOP	14	90	530	10.2	3600	3.5
CDCE913PWG4	PW	TSSOP	14	90	530	10.2	3600	3.5
CDCEL913PW	PW	TSSOP	14	90	530	10.2	3600	3.5
CDCEL913PW.B	PW	TSSOP	14	90	530	10.2	3600	3.5

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025