CD74AC151 8-Line to 1-Line Data Selector/Multiplexer ### 1 Features - AC types feature 1.5V to 5.5V operation and balanced noise immunity at 30% of the supply voltage - 8-line to 1-line multiplexers can perform as: - Boolean function generators - Parallel-to-serial converters - Data source selectors - Speed of bipolar F, AS, and S, with significantly reduced power consumption balanced propagation delays - ±24mA output drive current - Fanout to 15 F devices - SCR-latchup-resistant CMOS process and circuit design ## 2 Description This data selector/multiplexer provides full binary decoding to select one of eight data sources. The strobe (G) input must be at a low logic level to enable the inputs. A high level at the strobe terminal forces the W output high and the Y output low. #### **Package Information** | PART NUMBER | PACKAGE ⁽¹⁾ | PACKAGE
SIZE ⁽²⁾ | BODY SIZE(3) | |-------------|------------------------|--------------------------------|-----------------| | | D (SOIC, 16) | 9.90mm × 6mm | 9.90mm × 3.90mm | | CD74AC151 | N (PDIP, 16) | 19.3mm × 9.4mm | 19.3mm × 6.35mm | | CD/4AC151 | PW (TSSOP, 16) | 5mm × 6.4mm | 5mm × 4.4mm | | | BQB (WQFN, 16) | 3.5mm × 2.5mm | 3.5mm × 2.5mm | - For more information, see Mechanical, Packaging, and Orderable Information. - The package size (length × width) is a nominal value and includes pins, where applicable. - The body size (length × width) is a nominal value and does not include pins. Logic Diagram (Positive Logic) # **Table of Contents** | 1 Features1 | 6.3 Feature Description1 | 11 | |-------------------------------------------------------------|------------------------------------------------------|----| | 2 Description1 | 6.4 Device Functional Modes1 | | | 3 Pin Configuration and Functions3 | 7 Application and Implementation1 | 13 | | 4 Specifications4 | 7.1 Application Information | 13 | | 4.1 Absolute Maximum Ratings4 | 7.2 Typical Application1 | | | 4.2 ESD Ratings4 | 7.3 Power Supply Recommendations1 | | | 4.3 Recommended Operating Conditions4 | 7.4 Layout1 | 17 | | 4.4 Thermal Information5 | 8 Device and Documentation Support1 | | | 4.5 Electrical Characteristics5 | 8.1 Documentation Support1 | 9 | | 4.6 Switching Characteristics, V _{CC} = 1.5V5 | 8.2 Receiving Notification of Documentation Updates1 | 9 | | 4.7 Switching Characteristics, $V_{CC} = 3.3V \pm 0.3V$ 6 | 8.3 Support Resources1 | 9 | | 4.8 Switching Characteristics, V _{CC} = 5V ± 0.5V6 | 8.4 Trademarks1 | 19 | | 4.9 Operating Characteristics7 | 8.5 Electrostatic Discharge Caution1 | 19 | | 5 Parameter Measurement Information8 | 8.6 Glossary1 | 9 | | 6 Detailed Description10 | 9 Revision History1 | 9 | | 6.1 Overview10 | 10 Mechanical, Packaging, and Orderable | | | 6.2 Functional Block Diagram10 | Information2 | 20 | | - | | | # 3 Pin Configuration and Functions Figure 3-1. D, N or PW Packages; 16-Pin SOIC, PDIP or TSSOP (Top View) Figure 3-2. BQB Package, 16-Pin WQFN (Transparent Top View) #### **Pin Functions** | P | IN | I/O ⁽¹⁾ | DESCRIPTION | |----------------------------|-----------------|--------------------|--------------------------------------------------------------------------------------------------------| | NO. | NAME | 1/0(1/ | DESCRIPTION | | 1 | D3 | I | Data input 3 | | 2 | D2 | I | Data input 2 | | 3 | D1 | I | Data input 1 | | 4 | D0 | I | Data input 0 | | 5 | Y | 0 | Data output | | 6 | W | 0 | Data output, inverted | | 7 | G | I | Output strobe, active low | | 8 | GND | G | Ground | | 9 | С | I | Address select C | | 10 | В | I | Address select B | | 11 | Α | I | Address select A | | 12 | D7 | I | Data input 7 | | 13 | D6 | I | Data input 6 | | 14 | D5 | I | Data input 5 | | 15 | D4 | I | Data input 4 | | 16 | V _{CC} | Р | Positive supply | | Thermal Pad ⁽²⁾ |) | _ | The thermal pad can be connected to GND or left floating. Do not connect to any other signal or supply | ⁽¹⁾ I = Input, O = Output, I/O = Input or Output, G = Ground, P = Power ⁽²⁾ BQB package only ## 4 Specifications ## 4.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) | | | | MIN | MAX | UNIT | |---------------------|---------------------------------------------------|-----------------------------------------------------------|------|------|------| | V _{CC} | Supply voltage range | | -0.5 | 6 | V | | I _{IK} (2) | Input clamp current | (V _I < 0 or V _I > V _{CC}) | | ±20 | mA | | I _{OK} (2) | Output clamp current | (V _O < 0 or V _O > V _{CC}) | | ±50 | mA | | Io | Continuous output current | (V _O = 0 to V _{CC}) | | ±50 | mA | | | Continuous current through V _{CC} or GND | | | ±100 | mA | | T _{stg} | Storage temperature range | | -65 | 150 | °C | ⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ## 4.2 ESD Ratings | | | | VALUE | UNIT | |-------------|-------------------------|---------------------------------------------------------|-------|------| | $V_{(ESD)}$ | Electrostatic discharge | Human body model (HBM), per AEC Q100-002 ⁽¹⁾ | ±2000 | V | ⁽¹⁾ JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process. ## 4.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted)(1) | | | | T _A = 25°C | | -55°C to | 125°C | -40°C to | 85°C | LINIT | |-----------------|------------------------------------|----------------------------------|-----------------------|-----------------|----------|-----------------|----------|-----------------|-------| | | | | MIN | MAX | MIN | MAX | MIN | MAX | UNIT | | V _{CC} | Supply voltage | | 1.5 | 5.5 | 1.5 | 5.5 | 1.5 | 5.5 | V | | | | V _{CC} = 1.5 V | 1.2 | | 1.2 | | 1.2 | | | | V _{IH} | High-level input voltage | V _{CC} = 3 V | 2.1 | | 2.1 | | 2.1 | | V | | | | V _{CC} = 5.5 V | 3.85 | | 3.85 | | 3.85 | | | | | | V _{CC} = 1.5 V | | 0.3 | | 0.3 | | 0.3 | | | V _{IL} | Low-level input voltage | V _{CC} = 3 V | | 0.9 | | 0.9 | | 0.9 | V | | | | V _{CC} = 5.5 V | | 1.65 | | 1.65 | | 1.65 | | | VI | Input voltage | | 0 | V _{CC} | 0 | V _{CC} | 0 | V _{CC} | V | | Vo | Output voltage | | 0 | V _{CC} | 0 | V _{CC} | 0 | V _{CC} | V | | I _{OH} | High-level output current | V _{CC} = 4.5 V to 5.5 V | | -24 | | -24 | | -24 | mA | | I _{OL} | Low-level output current | V _{CC} = 4.5 V to 5.5 V | | 24 | | 24 | | 24 | mA | | Δt/Δν Ι | | V _{CC} = 1.5 V to 3 V | | 50 | | 50 | | 50 | ns/V | | | Input transition rise or fall rate | V _{CC} = 3.6 V to 5.5 V | | 20 | | 20 | | 20 | | ⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated ⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed. #### 4.4 Thermal Information | | | D (SOIC) | N (PDIP) | BQB (WQFN) | PW (TSSOP) | | |-----------------|----------------------------------------|----------|----------|------------|------------|------| | THERMAL ME | TRIC | 16 PINS | 16 PINS | 16 PINS | 16 PINS | UNIT | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 119.9 | 67 | 98.6 | 139.5 | °C/W | For more information about traditional and new thermal metrics, see the <u>Semiconductor and IC package thermal metrics</u> application report. ### 4.5 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) | DADAMETED | TEST CONDITIONS | | V | TA = 2 | 5°C | -55°C to | 125°C | -40°C to 85°C | | UNIT | |-----------------|-----------------------------------------|-----------------------------------------|-----------------|--------|------|----------|-------|---------------|------|------| | PARAMETER | | | V _{CC} | MIN | MAX | MIN | MAX | MIN | MAX | UNII | | | | I _{OH} = -50 μA | 1.5 V | 1.4 | | 1.4 | | 1.4 | | | | V _{OH} | | | 3 V | 2.9 | | 2.9 | | 2.9 | | | | | | | 4.5 V | 4.4 | | 4.4 | | 4.4 | | | | | $V_I = V_{IH}$ or V_{IL} | I _{OH} = -4 mA | 3 V | 2.58 | | 2.4 | | 2.48 | | V | | | | I _{OH} = -24 mA | 4.5 V | 3.94 | | 3.7 | | 3.8 | | | | | | I _{OH} = -50 mA ⁽¹⁾ | 5.5 V | | | 3.85 | | | | | | | | I _{OH} = -75 mA ⁽¹⁾ | 5.5 V | | | | | 3.85 | | | | | | | 1.5 V | | 0.1 | | 0.1 | | 0.1 | | | | | I _{OL} = 50 μA | 3 V | | 0.1 | | 0.1 | | 0.1 | | | | | | 4.5 V | | 0.1 | | 0.1 | | 0.1 | | | V _{OL} | $V_I = V_{IH}$ or V_{IL} | I _{OL} = 12 mA | 3 V | | 0.36 | | 0.5 | | 0.44 | V | | | | I _{OL} = 24 mA | 4.5 V | | 0.36 | | 0.5 | | 0.44 | | | | | I _{OL} = 50 mA ⁽¹⁾ | 5.5 V | | | | 1.65 | | - | | | | | I _{OL} = 75 mA ⁽¹⁾ | 5.5 V | | | | | | 1.65 | | | I _I | V _I = V _{CC} or GND | | 5.5 V | | ±0.1 | | ±1 | | ±1 | μΑ | | I _{CC} | $V_I = V_{CC}$ or GND, | I _O = 0 | 5.5 V | | 8 | | 160 | | 80 | μA | | C _i | | | | | 10 | | 10 | | 10 | pF | ⁽¹⁾ Test one output at a time, not exceeding 1-second duration. Measurement is made by forcing indicated current and measuring voltage to minimize power dissipation. Test verifies a minimum 50-Ω transmission-line drive capability at 85°C and 75-Ω transmission-line drive capability at 125°C. # 4.6 Switching Characteristics, V_{CC} = 1.5V over recommended operating free-air temperature range, V_{CC} = 1.5V, C_L = 50pF (unless otherwise noted) (see Load Circuit and Voltage Waveforms) | PARAMETER | EDOM (INDUT) | TO (OUTDUT) | -55°C to 125°C | -40°C to 85°C | UNIT | |------------------|--------------|-------------|----------------|---------------|------| | PARAWEIER | FROM (INPUT) | TO (OUTPUT) | MIN MAX | MIN MAX | UNII | | t _{PLH} | _ D | V | 169 | 152 | ns | | t _{PHL} | | ľ | 169 | 169 152 | | | t _{PLH} | D | W | 186 | 169 | ns | | t _{PHL} | | VV | 186 | 169 | | | t _{PLH} | A, B, or C | V | 228 | 207 | | | t _{PHL} | A, B, of C | r | 228 207 | | ns | | t _{PLH} | A, B, or C | W | 245 | 223 | 20 | | t _{PHL} | Α, Β, δι C | VV | 245 | 223 | ns | Copyright © 2025 Texas Instruments Incorporated Submit Document Feedback over recommended operating free-air temperature range, V_{CC} = 1.5V, C_L = 50pF (unless otherwise noted) (see Load Circuit and Voltage Waveforms) | PARAMETER | FROM (INPUT) | TO (OUTPUT) | -55°C to 125°C | -40°C to 85°C | UNIT | |------------------|--------------|-------------|----------------|---------------|------| | | FROW (NAPOT) | 10 (001701) | MIN MAX | MIN MAX | ONII | | t _{PLH} | G | V | 153 | 139 | | | t _{PHL} | g | T | 153 | 139 | ns | | t _{PLH} | G | W | 169 | 153 | | | t _{PHL} | G | VV | 169 | 153 | ns | # 4.7 Switching Characteristics, $V_{CC} = 3.3V \pm 0.3V$ over recommended operating free-air temperature range, V_{CC} = 3.3V ± 0.3V, C_L = 50pF (unless otherwise noted) (see Load Circuit and Voltage Waveforms) | PARAMETER | EDOM (INDUT) | TO (OUTPUT) | -55°C to 1 | 25°C | -40°C to 85°C | | UNIT | |------------------|--------------|-------------|------------|------|---------------|------|------| | PARAMETER | FROM (INPUT) | 10 (001701) | MIN | MAX | MIN | MAX | UNII | | t _{PLH} | - D | Y | 4.7 | 18.9 | 4.9 | 17.1 | ns | | t _{PHL} | D | ľ | 4.7 | 18.9 | 4.9 | 17.1 | 115 | | t _{PLH} | D | W | 5.2 | 20.9 | 5.4 | 19 | no | | t _{PHL} | | VV | 5.2 | 20.9 | 5.4 | 19 | ns | | t _{PLH} | A, B, or C | Υ | 6.4 | 25.5 | 6.6 | 23.2 | no | | t _{PHL} | A, B, Of C | T T | 6.4 | 25.5 | 6.6 | 23.2 | ns | | t _{PLH} | A, B, or C | W | 6.9 | 27.4 | 7.1 | 24.9 | no | | t _{PHL} | A, B, Of C | VV | 6.9 | 27.4 | 7.1 | 24.9 | ns | | t _{PLH} | - <u>G</u> | Υ | 4.3 | 17.1 | 4.4 | 15.5 | | | t _{PHL} | G | T T | 4.3 | 17.1 | 4.4 | 15.5 | ns | | t _{PLH} | - <u>G</u> | W | 4.7 | 18.9 | 4.9 | 17.2 | no | | t _{PHL} | | VV | 4.7 | 18.9 | 4.9 | 17.2 | ns | # 4.8 Switching Characteristics, $V_{CC} = 5V \pm 0.5V$ over recommended operating free-air temperature range, V_{CC} = 5V ± 0.5V, C_L = 50pF (unless otherwise noted) (see Load Circuit and Voltage Waveforms) | PARAMETER | EDOM (INDUT) | TO (OUTDUT) | -55°C to 1 | 25°C | -40°C to 85°C | | UNIT | |------------------|--------------|-------------|------------|------|---------------|------|------| | PARAMETER | FROM (INPUT) | TO (OUTPUT) | MIN | MAX | MIN | MAX | UNII | | t _{PLH} | _ D | Y | 3.4 | 13.5 | 3.5 | 12.3 | ns | | t _{PHL} | U | I I | 3.4 | 13.5 | 3.5 | 12.3 | 115 | | t _{PLH} | _ D | W | 3.7 | 14.9 | 3.8 | 13.5 | no | | t _{PHL} | U | VV | 3.7 | 14.9 | 3.8 | 13.5 | ns | | t _{PLH} | A, B, or C | Y | 4.6 | 18.2 | 4.7 | 16.5 | no | | t _{PHL} | A, B, OI C | T T | 4.6 | 18.2 | 4.7 | 16.5 | ns | | t _{PLH} | A. B. or C | W | 4.9 | 19.6 | 5.1 | 17.8 | | | t _{PHL} | A, B, or C | VV | 4.9 | 19.6 | 5.1 | 17.8 | ns | | t _{PLH} | - G | Υ | 3.1 | 12.2 | 3.1 | 11.1 | 20 | | t _{PHL} | G | ř | 3.1 | 12.2 | 3.1 | 11.1 | ns | | t _{PLH} | G | W | 3.4 | 13.5 | 3.5 | 12.3 | no | | t _{PHL} | _ | VV | 3.4 | 13.5 | 3.5 | 12.3 | ns | Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated # **4.9 Operating Characteristics** V_{CC} = 5V, T_A = 25°C | | PARAMETER | TYP | UNIT | |----------|-------------------------------|-----|------| | C_{pd} | Power dissipation capacitance | 120 | pF | ### **5 Parameter Measurement Information** - A. C_L includes probe and test-fixture capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_r = 3 ns, t_f = 3 ns. Phase relationships between waveforms are arbitrary. - D. For clock inputs, f_{max} is measured with the input duty cycle at 50%. - E. The outputs are measured one at a time with one input transition per measurement. - F. t_{PLH} and t_{PHL} are the same as t_{pd}. - G. t_{PZL} and t_{PZH} are the same as t_{en}. - H. t_{PLZ} and t_{PHZ} are the same as t_{dis}. - I. All parameters and waveforms are not applicable to all devices. Figure 5-1. Load Circuit and Voltage Waveforms | TEST | S1 | |------------------------------------|---------------------| | t _{PLH} /t _{PHL} | Open | | t _{PLZ} /t _{PZL} | 2 × V _{CC} | | t _{PHZ} /t _{PZH} | GND | ## **6 Detailed Description** ### **6.1 Overview** The CD74AC151 is a high speed silicon gate CMOS multiplexer well suited to multiplexing and data routing applications. It contains a single 8:1 multiplexer. The CD74AC151 operates asynchronously, with the Y output being equal to the input selected by the address inputs (A, B, C). The W output is always the inverse of the Y output. The strobe (\overline{G}) input forces the Y output low, and the W output high, regardless of the state of other inputs. ## 6.2 Functional Block Diagram Figure 6-1. Logic Diagram (Positive Logic) for CD74AC151 ### **6.3 Feature Description** ### 6.3.1 Balanced CMOS Push-Pull Outputs This device includes balanced CMOS push-pull outputs. The term *balanced* indicates that the device can sink and source similar currents. The drive capability of this device may create fast edges into light loads, so routing and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. It is important to limit the output power of the device to avoid damage due to overcurrent. The electrical and thermal limits defined in the *Absolute Maximum Ratings* must be followed at all times. Unused push-pull CMOS outputs must be left disconnected. #### 6.3.2 Standard CMOS Inputs This device includes standard CMOS inputs. Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input capacitance given in the *Electrical Characteristics*. The worst case resistance is calculated with the maximum input voltage, given in the *Absolute Maximum Ratings*, and the maximum input leakage current, given in the *Electrical Characteristics*, using Ohm's law $(R = V \div I)$. Standard CMOS inputs require that input signals transition between valid logic states quickly, as defined by the input transition time or rate in the *Recommended Operating Conditions* table. Failing to meet this specification will result in excessive power consumption and could cause oscillations. More details can be found in *Implications of Slow or Floating CMOS Inputs*. Do not leave standard CMOS inputs floating at any time during operation. Unused inputs must be terminated at V_{CC} or GND. If a system will not be actively driving an input at all times, then a pull-up or pull-down resistor can be added to provide a valid input voltage during these times. The resistor value will depend on multiple factors; a $10k\Omega$ resistor, however, is recommended and will typically meet all requirements. #### 6.3.3 Clamp Diode Structure As shown in Figure 6-2, the inputs and outputs to this device have both positive and negative clamping diodes. #### **CAUTION** Voltages beyond the values specified in the *Absolute Maximum Ratings* table can cause damage to the device. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. Figure 6-2. Electrical Placement of Clamping Diodes for Each Input and Output ### **6.4 Device Functional Modes** Function Table lists the functional modes of the CD74AC151. **Table 6-1. Function Table** | | INPU | OUTP | UTS ⁽²⁾ | | | |---|--------|------|--------------------|----|----------------| | | SELECT | | STROBE | Υ | W | | С | В | Α | G | I | VV | | Х | Х | Х | Н | L | Н | | L | L | L | L | D0 | D0 | | L | L | Н | L | D1 | D1 | | L | Н | L | L | D2 | D2 | | L | Н | Н | L | D3 | D3 | | Н | L | L | L | D4 | D4 | | Н | L | Н | L | D5 | D5 | | Н | Н | L | L | D6 | D 6 | | Н | Н | Н | L | D7 | D7 | - (1) - H = High Voltage Level, L = Low Voltage Level, X = Don't Care H = Driving High, L = Driving Low, Dx = Driving same value as Dx input, \overline{Dx} = Driving inverted value from Dx input Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated ## 7 Application and Implementation #### **Note** Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. ## 7.1 Application Information The CD74AC151 is an 8-to-1 data selector/multiplexer. This application shows an example of using the device with all required connections. ## 7.2 Typical Application Figure 7-1. Typical Application Block Diagram ### 7.2.1 Design Requirements #### 7.2.1.1 Power Considerations Ensure the desired supply voltage is within the range specified in the *Recommended Operating Conditions*. The supply voltage sets the device's electrical characteristics of the device as described in the *Electrical Characteristics* section. The positive voltage supply must be capable of sourcing current equal to the total current to be sourced by all outputs of the CD74AC151 plus the maximum static supply current, I_{CC} , listed in the *Electrical Characteristics*, and any transient current required for switching. The logic device can only source as much current that is provided by the positive supply source. Ensure the maximum total current through V_{CC} listed in the *Absolute Maximum Ratings* is not exceeded. The ground must be capable of sinking current equal to the total current to be sunk by all outputs of the CD74AC151 plus the maximum supply current, I_{CC}, listed in the *Electrical Characteristics*, and any transient current required for switching. The logic device can only sink as much current that can be sunk into its ground connection. Ensure the maximum total current through GND listed in the *Absolute Maximum Ratings* is not exceeded. The CD74AC151 can drive a load with a total capacitance less than or equal to 50pF while still meeting all of the data sheet specifications. Larger capacitive loads can be applied; however, it is not recommended to exceed 50pF. The CD74AC151 can drive a load with total resistance described by $R_L \ge V_O$ / I_O , with the output voltage and current defined in the *Electrical Characteristics* table with V_{OH} and V_{OL} . When outputting in the HIGH state, the output voltage in the equation is defined as the difference between the measured output voltage and the supply voltage at the V_{CC} pin. Total power consumption can be calculated using the information provided in *CMOS Power Consumption and Cpd Calculation*. Thermal increase can be calculated using the information provided in *Thermal Characteristics of Standard Linear* and Logic (SLL) Packages and Devices. #### **CAUTION** The maximum junction temperature, $T_{J(max)}$ listed in the *Absolute Maximum Ratings*, is an additional limitation to prevent damage to the device. Do not violate any values listed in the *Absolute Maximum Ratings*. These limits are provided to prevent damage to the device. Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated #### 7.2.1.2 Input Considerations Input signals must cross $V_{IL(max)}$ to be considered a logic LOW, and $V_{IH(min)}$ to be considered a logic HIGH. Do not exceed the maximum input voltage range found in the *Absolute Maximum Ratings*. Unused inputs must be terminated to either V_{CC} or ground. The unused inputs can be directly terminated if the input is completely unused, or they can be connected with a pull-up or pull-down resistor if the input will be used sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used for a default state of LOW. The drive current of the controller, leakage current into the CD74AC151 (as specified in the *Electrical Characteristics*), and the desired input transition rate limits the resistor size. A $10k\Omega$ resistor value is often used due to these factors. The CD74AC151 has CMOS inputs and thus requires fast input transitions to operate correctly, as defined in the *Recommended Operating Conditions* table. Slow input transitions can cause oscillations, additional power consumption, and reduction in device reliability. Refer to the Feature Description section for additional information regarding the inputs for this device. #### 7.2.1.3 Output Considerations The positive supply voltage is used to produce the output HIGH voltage. Drawing current from the output will decrease the output voltage as specified by the V_{OH} specification in the *Electrical Characteristics*. The ground voltage is used to produce the output LOW voltage. Sinking current into the output will increase the output voltage as specified by the V_{OL} specification in the *Electrical Characteristics*. Push-pull outputs that could be in opposite states, even for a very short time period, should never be connected directly together. This can cause excessive current and damage to the device. Two channels within the same device with the same input signals can be connected in parallel for additional output drive strength. Unused outputs can be left floating. Do not connect outputs directly to V_{CC} or ground. Refer to the Feature Description section for additional information regarding the outputs for this device. ### 7.2.2 Detailed Design Procedure - Add a decoupling capacitor from V_{CC} to GND. The capacitor needs to be placed physically close to the device and electrically close to both the V_{CC} and GND pins. An example layout is shown in the *Layout* section - 2. Ensure the capacitive load at the output is ≤ 50pF. This is not a hard limit; by design, however, it will optimize performance. This can be accomplished by providing short, appropriately sized traces from the CD74AC151 to one or more of the receiving devices. - 3. Ensure the resistive load at the output is larger than $(V_{CC} / I_{O(max)})\Omega$. Doing this will prevent the maximum output current from the *Absolute Maximum Ratings* from being violated. Most CMOS inputs have a resistive load measured in M Ω ; much larger than the minimum calculated previously. - 4. Thermal issues are rarely a concern for logic gates; the power consumption and thermal increase, however, can be calculated using the steps provided in the application report, *CMOS Power Consumption and Cpd Calculation*. #### 7.2.3 Application Curve Figure 7-2. Application Timing Diagram Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated ### 7.3 Power Supply Recommendations The power supply can be any voltage between the minimum and maximum supply voltage rating located in the *Recommended Operating Conditions*. Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. A $0.1\mu F$ capacitor is recommended for this device. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. The $0.1\mu F$ and $1\mu F$ capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results. #### 7.4 Layout ### 7.4.1 Layout Guidelines - · Bypass capacitor placement - Place near the positive supply terminal of the device - Provide an electrically short ground return path - Use wide traces to minimize impedance - Keep the device, capacitors, and traces on the same side of the board whenever possible - Signal trace geometry - 8mil to 12mil trace width - Lengths less than 12cm to minimize transmission line effects - Avoid 90° corners for signal traces - Use an unbroken ground plane below signal traces - Flood fill areas around signal traces with ground - Parallel traces must be separated by at least 3x dielectric thickness - For traces longer than 12cm - · Use impedance controlled traces - · Source-terminate using a series damping resistor near the output - · Avoid branches; buffer each signal that must branch separately #### 7.4.2 Layout Example Figure 7-3. Example Trace Corners for Improved Signal Integrity Figure 7-4. Example Bypass Capacitor Placement for TSSOP and Similar Packages Figure 7-5. Example Bypass Capacitor Placement for WQFN and Similar Packages Figure 7-6. Example Bypass Capacitor Placement for SOT, SC70 and Similar Packages Figure 7-7. Example Damping Resistor Placement for Improved Signal Integrity Submit Document Feedback ## 8 Device and Documentation Support TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. ### 8.1 Documentation Support #### 8.1.1 Related Documentation For related documentation, see the following: - Texas Instruments, CMOS Power Consumption and Cpd Calculation application report - Texas Instruments, Designing With Logic application report - Texas Instruments, Thermal Characteristics of Standard Linear and Logic (SLL) Packages and Devices application report ## 8.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ### 8.3 Support Resources TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. #### 8.4 Trademarks TI E2E[™] is a trademark of Texas Instruments. All trademarks are the property of their respective owners. ### 8.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### 8.6 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. ## 9 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. | C | hanges from Revision A (July 2024) to Revision B (May 2025) | Page | |---|---------------------------------------------------------------------------------------------------|------| | • | Changed the key graphic on the first page of the data sheet | 1 | | • | Added Overview section, Feature Description section, Application Information section, and Typical | | | | Application section | 1 | | • | Added BQB and PW packages to Pin Configuration and Functions | 3 | | • | Added BQB and PW packages to Thermal Information | 5 | | | · · · | | | C | changes from Revision ^ (March 2003) to Revision A (July 2024) | Page | |---|----------------------------------------------------------------------------------------------------|----------| | • | Added Package Information table, Pin Functions table, ESD Ratings table, Thermal Information table | , Device | | | Functional Modes, Application and Implementation section, Device and Documentation Support section | on, and | | | Mechanical, Packaging, and Orderable Information section | 1 | Updated RθJA values: D = 73 to 119.9, all values in °C/W......5 # 10 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Submit Document Feedback Copyright © 2025 Texas Instruments Incorporated 29-May-2025 www.ti.com #### PACKAGING INFORMATION | Orderable part number | Status | Material type | Package Pins | Package qty Carrier | RoHS | Lead finish/ MSL rating/
Ball material Peak reflow | | Op temp (°C) | Part marking | |-----------------------|--------|---------------|-----------------|-----------------------|------|---|--------------------|--------------|--------------| | | (1) | (2) | | | (3) | (4) | (5) | | (6) | | CD74AC151BQBR | Active | Production | WQFN (BQB) 16 | 3000 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | AC151 | | CD74AC151E | Active | Production | PDIP (N) 16 | 25 TUBE | Yes | NIPDAU | N/A for Pkg Type | -55 to 125 | CD74AC151E | | CD74AC151E.A | Active | Production | PDIP (N) 16 | 25 TUBE | Yes | NIPDAU | N/A for Pkg Type | -55 to 125 | CD74AC151E | | CD74AC151M96 | Active | Production | SOIC (D) 16 | 2500 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | AC151M | | CD74AC151M96.A | Active | Production | SOIC (D) 16 | 2500 LARGE T&R | Yes | NIPDAU | Level-1-260C-UNLIM | -55 to 125 | AC151M | | CD74AC151PWR | Active | Production | TSSOP (PW) 16 | 3000 LARGE T&R | Yes | NIPDAU SN | Level-1-260C-UNLIM | -55 to 125 | AC151 | ⁽¹⁾ Status: For more details on status, see our product life cycle. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. ⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. ⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. ⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. ⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. # **PACKAGE OPTION ADDENDUM** www.ti.com 29-May-2025 www.ti.com 30-May-2025 ## TAPE AND REEL INFORMATION | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |---------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | CD74AC151BQBR | WQFN | BQB | 16 | 3000 | 180.0 | 12.4 | 2.8 | 3.8 | 1.2 | 4.0 | 12.0 | Q1 | | CD74AC151M96 | SOIC | D | 16 | 2500 | 330.0 | 16.4 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 | | CD74AC151M96 | SOIC | D | 16 | 2500 | 330.0 | 16.4 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 | | CD74AC151PWR | TSSOP | PW | 16 | 3000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | www.ti.com 30-May-2025 #### *All dimensions are nominal | 7 till difficilities die 1161 | | | | | | | | | |-------------------------------|---|--------------|-----------------|------|------|-------------|------------|-------------| | Device | | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | CD74AC151BQE | R | WQFN | BQB | 16 | 3000 | 210.0 | 185.0 | 35.0 | | CD74AC151M9 | 6 | SOIC | D | 16 | 2500 | 353.0 | 353.0 | 32.0 | | CD74AC151M9 | 6 | SOIC | D | 16 | 2500 | 353.0 | 353.0 | 32.0 | | CD74AC151PW | R | TSSOP | PW | 16 | 3000 | 353.0 | 353.0 | 32.0 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 30-May-2025 ## **TUBE** *All dimensions are nominal | Device | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | T (µm) | B (mm) | |--------------|--------------|--------------|------|-----|--------|--------|--------|--------| | CD74AC151E | N | PDIP | 16 | 25 | 506 | 13.97 | 11230 | 4.32 | | CD74AC151E | N | PDIP | 16 | 25 | 506 | 13.97 | 11230 | 4.32 | | CD74AC151E.A | N | PDIP | 16 | 25 | 506 | 13.97 | 11230 | 4.32 | | CD74AC151E.A | N | PDIP | 16 | 25 | 506 | 13.97 | 11230 | 4.32 | # D (R-PDS0-G16) ## PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AC. 2.5 x 3.5, 0.5 mm pitch PLASTIC QUAD FLATPACK - NO LEAD This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. INSTRUMENTS www.ti.com PLASTIC QUAD FLAT PACK-NO LEAD ### NOTES: - All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance. PLASTIC QUAD FLAT PACK-NO LEAD NOTES: (continued) - 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271). - 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. PLASTIC QUAD FLAT PACK-NO LEAD NOTES: (continued) 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. SMALL OUTLINE PACKAGE #### NOTES: - 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not - exceed 0.15 mm per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. - 5. Reference JEDEC registration MO-153. SMALL OUTLINE PACKAGE NOTES: (continued) - 6. Publication IPC-7351 may have alternate designs. - 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SMALL OUTLINE PACKAGE NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. # N (R-PDIP-T**) # PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. ### IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated