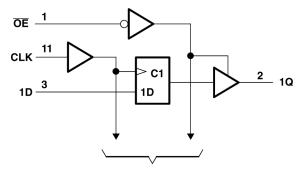


CD74AC374, CD54AC374, CD54ACT374, CD74ACT374, CD74AC534 SCHS290A - DECEMBER 1998 - REVISED MARCH 2024

CDx4AC374, CDx4ACT374, CD74AC534 Octal D-Type Flip-Flops, 3-State Positive-**Edge Triggered**

1 Features

- SCR-Latch-up-resistant CMOS process and circuit
- Speed of bipolar FAST*/AS/S with significantly reduced power consumption
- Balanced propagation delays
- AC types feature 1.5V to 5.5V operation and balanced noise immunity at 30% of the supply
- ± 24mA output drive current
 - Fanout to 15 FAST* ICs
 - Drives 50ohm transmission lines


2 Description

The eight flip-flops of the 'AC374 devices are D-type edge-triggered flip-flops. On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels set up at the data (D) inputs.

Device Information

PART NUMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE(2)	BODY SIZE(3)
CDx4AC/ACT374,	DW (SOIC, 20)	12.80mm × 10.3mm	12.80mm × 7.50mm
CD74AC534	N (PDIP, 20)	24.33mm × 9.4mm	24.33mm × 6.35mm

- For more information, see Section 10. (1)
- (2) The package size (length × width) is a nominal value and includes pins, where applicable.
- The body size (length × width) is a nominal value and does not include pins.

To Seven Other Channels Logic Diagram (Positive Logic)

FAST is a Registered Trademark of Fairchild Semiconductor Corp.

Table of Contents

1 Features1	6.2 Functional Block Diagram	11
2 Description1	6.3 Device Functional Modes	11
3 Pin Configuration and Functions3	7 Application and Implementation	12
4 Specifications4	7.1 Typical Application	12
4.1 Absolute Maximum Ratings4	7.2 Power Supply Recommendations	12
4.2 ESD Ratings4	7.3 Layout	13
4.3 Recommended Operating Conditions:4	8 Device and Documentation Support	14
4.4 Thermal Information4	8.1 Documentation Support (Analog)	14
4.5 Electrical Characteristics: AC Series5	8.2 Receiving Notification of Documentation Updates	14
4.6 Electrical Characteristics: ACT Series5	8.3 Support Resources	14
4.7 Prerequisite for Switching: AC Series6	8.4 Trademarks	14
4.8 Switching Characteristics: AC Series7	8.5 Electrostatic Discharge Caution	14
4.9 Prerequisite for Switching: ACT Series7	8.6 Glossary	14
4.10 Switching Characteristics: ACT Series7	9 Revision History	
5 Parameter Measurement Information9	10 Mechanical, Packaging, and Orderable	
6 Detailed Description11	Information	15
6.1 Overview11		

3 Pin Configuration and Functions

Figure 3-1. CDx4AC/ACT374, CD74AC534

Figure 3-2. CDx4AC/ACT374, CD74AC534

Table 3-1. Pin Functions

	PIN	TVDE	DECODINE
NAME	NO.	TYPE	DESCRIPTION
ŌĒ	1	I	Enable pin
1Q	2	0	Output 1
1D	3	I	Input 1
2D	4	I	Input 2
2Q	5	0	Output 2
3Q	6	0	Output 3
3D	7	I	Input 3
4D	8	I	Input 4
4Q	9	0	Output 4
GND	10	-	Ground pin
CLK	11	I	Clock pin
5Q	12	0	Output 5
5D	13	I	Input 5
6D	14	I	Input 6
6Q	15	0	Output 6
7Q	16	0	Output 7
7D	17	I	Input 7
8D	18	I	Input 8
8Q	19	0	Output 8
V _{CC}	20	_	Power pin

4 Specifications

4.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V _{CC}	Supply-voltage		-0.5	6	V
I _{IK}	Input diode current	(V _I < -0.5 V or V, > V _{CC} ± 0.5 V)		±20	mA
I _{OK}	Output diode current	V_{O} < -0.5 V or V_{O} > V_{CC} + 0.5 V)		±50	mA
Io	Output source or sink current per output pin	(V _O > -0.5 V or V _O < V _{CC} + 0.5 V)		±50	mA
	DC V _{cc} or ground current (I _{CC} or I _{GND})			±100	mA ⁽²⁾
T _{stg}	Storage temperature		-65	+150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

4.2 ESD Ratings

			VALUE	UNIT
V _{(ESD}	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-0011	±2000	V

4.3 Recommended Operating Conditions:

For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges:

	CHARACTERISTIC	MIN	MAX	UNIT
V _{CC} (1)	Supply-Voltage Range: (For T _A = Full Package-Temperature Range)			
	AC Types	1.5	5.5	V
	ACT Types	4.5	5.5	V
V _I , V _O	Input or Output Voltage	0	V _{CC}	V
T _A	Operating Temperature	-55	+125	°C
dt/dv	Input Rise and Fall Slew Rate			
	at 1.5 V to 3 V (AC Types)	0	50	ns/V
	at 3.6 V to 5.5 V (AC Types)	0	20	ns/V
	at 4.5 V to 5.5 V (ACT Types)	0	10	ns/V

⁽¹⁾ Unless otherwise specified, all voltages are referenced to ground.

4.4 Thermal Information

	1		C/ACT374, IAC534	UNIT	
THERMAL METRICO	THERMAL METRIC ⁽¹⁾				
R _{0JA} Junction-to-ambient thermal resistance	101.2	50	°C/W		

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

⁽²⁾ For up to 4 outputs per device; add ± 25 mA for each additional output.

4.5 Electrical Characteristics: AC Series

		TEST COMP	ITIONS			AMBIEN	T TEMPER	ATURE (T _A) - °C		
С	HARACTERISTICS	TEST COND	IIIONS	V _{CC} (V)	+25	5	-40 to -	+85	-55 to +	125	UNIT
		V _I (V)	I _O (mA)		MIN	MAX	MIN	MAX	MIN	MAX	
				1.5	1.2	_	1.2	_	1.2	_	
V _{IH}	High-Level Input Voltage			3	2.1	_	2.1	_	2.1	_	V
				5.5	3.85	_	3.85	_	3.85	_	
	Land and board			1.5	_	0.3		0.3		0.3	
V _{IL}	Low-Level Input Voltage			3	_	0.9		0.9		0.9	V
				5.5	_	1.65	_	1.65	_	1.65	
			-0.05	1.5	1.4	_	1.4	_	1.4	_	
			-0.05	3	2.9	_	2.9	_	2.9	_	
	High Land Outside	V (1)	-0.05	4.5	4.4		4.4	_	4.4	_	
V _{OH}	High-Level Output Voltage	V _{IH} or V _{IL} ⁽¹⁾ , ⁽²⁾	-4	3	2.58	_	2.48	_	2.4	_	
			-24	4.5	3.94	_	3.8	_	3.7	_	V
			-75	5.5	_	-	3.85	_	_	_	
			-50	5.5	_	_	_	_	3.85	_	
			0.05	1.5	_	0.1	_	0.1	_	0.1	
			0.05	3	_	0.1	_	0.1	_	0.1	
), (1)	0.05	4.5	_	0.1	_	0.1	_	0.1	
V _{OH}	Low-Level Output Voltage	V _{IH} or V _{IL} ⁽¹⁾ ,	12	3	_	0.36	_	0.44	_	0.5	V
			24	4.5	_	0.36	_	0.44	_	0.5	
			75	5.5	_	_	_	1.65	_	_	
			50	5.5	_	_	_	_	_	1.65	
II	Input Leakage Current	V _{CC} or GND		5.5	_	±0.1	_	±1	_	±1	μΑ
I _{OZ}	3-State Leakage Current	V _{IH} or V _{IL} V _O = V _{CC} or GND		5.5	_	±0.5	_	±5	_	±10	μΑ
I _{cc}	Quiescent Supply Current, MSI	V _{CC} or GND	0	5.5	_	8	_	80	_	160	μΑ

⁽¹⁾ Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.

4.6 Electrical Characteristics: ACT Series

		TEST CONI	DITIONS		AMBIENT TEMPERATURE (T _A) - °C						
	CHARACTERISTICS	TEST COM	DITIONS	V _{CC} (V)	+25		-40 to -	+85	-55 to +125		UNIT
		V _I (V)	I _O (mA)		MIN	MAX	MIN	MAX	MIN	MAX	
V _{IH}	High-Level Input Voltage			4.5 to 5.5	2	_	2	_	2	_	V
V _{IL}	Low-Level Input Voltage			4.5 to 5.5		0.8	_	0.8	_	0.8	V
	High-Level Output V _{IH} o		-0.05	4.5	4.4	_	4.4	_	4.4	_	
,		gh-Level Output V_{IH} or V_{IL} (1), -24	-24	4.5	3.94	_	3.8	_	3.7	_	v
V _{OH}		(2)	-75	5.5	_	_	3.85	_	_	_	v
			-50	5.5	_	_	_	_	3.85	_	

⁽²⁾ Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C.

		TEST COM	DITIONS			AMBIEN	IT TEMPER	ATURE ((T _A) - °C			
	CHARACTERISTICS	TEST CONI	SMOITIU	V _{CC} (V)	+25		-40 to	+85	-55 to +	125	UNIT	
		V _I (V)	I _O (mA)		MIN	MAX	MIN	MAX	MIN	MAX		
			0.05	4.5	_	0.1	_	0.1	_	0.1		
V _{OL}	Low-Level Output	V _{IH} or V _{IL} ⁽¹⁾ ,	24	4.5	_	0.36	_	0.44	_	0.5	V	
	Voltage	(2)	75	5.5	_	_	_	1.65	_	_	v	
			50	5.5	_	_	_	_	_	1.65		
I	Input Leakage Current	V _{CC} or GND		5.5	_	±0.1	_	±1	_	±1	μA	
I _{OZ}	3-State Leakage Current	V _{IH} or V _{IL} V _O = V _{CC} or GND		5.5	_	±0.5	_	±5	_	±10	μA	
Icc	Quiescent Supply Current, MSI	V _{CC} or GND	0	5.5	_	8	_	80	_	160	μA	
ΔI _{CC}	Additional Quiescent Supply Current per Input Pin	V _{CC} -2.1		4.5 to	_	2.4	_	2.8	_	3	mA	
	TTL Inputs High	1 * 00 2.1	5.5									
	1 Unit Load											

⁽¹⁾ Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation.

Act Input Loading Table

INPUT	UNIT LOADS(2)
D, O E	0.7
СР	1.17

4.7 Prerequisite for Switching: AC Series

			AMBIEN	T TEMPE	RATURE (T _A) - °	С	
	CHARACTERISTICS	V _{CC} (V)	-40 to +85		-55 to+12	25	UNIT
			MIN	MAX	MIN	MAX	
		1.5	44	_	50	_	
t _w	Clock Pulse Width	3.3 ⁽¹⁾	4.9	_	5.6	_	ns
		5 ⁽²⁾	3.5	_	4	_	
	Setup Time Data to Clock	1.5	2	_	2		
t _{SU}		3.3	2	_	2	_	ns
		5	2	_	2	_	
		1.5	2	_	2		
t _H	Hold Time Data to Clock	3.3	2	_	2	_	ns
		5	2	_	2	_	
	Maximum Clock Frequency	1.5	11	_	10	_	
f _{MAX}		3.3	101	_	89	_	MHz
		5	143	_	125	_	

^{(1) 3.3} V: min. is @ 3 V

⁽²⁾ Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C. 75 ohms at + 125°C.

^{(2) 5} V: min. is @ 4.5 V

4.8 Switching Characteristics: AC Series

 t_r , t_l = 3 ns, C_L = 50 pF

			AMBII	ENT TEM	PERATURE (1	Γ _A) - °C	
SYMBOL	CHARACTERISTICS	V _{cc} (V)	-40 to	+85	-55 to+	125	UNIT
			MIN	MAX	MIN	MAX	
		1.5	_	123	_	135	
t _{PLH} , t _{PHL}	Propagation Delays: Clock to Q AC374	3.3(1)	3.9	13.7	3.8	15.1	ns
		5 ⁽²⁾	2.8	9.8	2.7	10.8	
		1.5		128	_	141	
t _{PLH} , t _{PHL}	Clock to Q AC534	3.3	4.1	14.4	4	15.8	ns
		5	2.9	10.3	2.8	11.3	
t _{PLH} , t _{PZH}		1.5	_	165	_	181	
	Output Enable to Q, \overline{Q}	3.3	5.6	19.8	5.5	21.8	ns
		5	3.7	13.2	3.6	14.5	
		1.5	_	165	_	181	ns
t _{PLZ} , t _{PHZ}	Output Disable to Q, \overline{Q}	3.3	4.7	16.5	4.5	18.1	
		5	3.7	13.2	3.6	14.5	
C _{PD} (3)	Power Dissipation Capacitance	_	67 Ty	p.	67 Ty	/p.	pF
Min. (Valley) V _{OH} During Switching of Other Outputs (Output Under Test Not Switching)		5	4 Typ. @ 25°C				V
	Max. (Peak) V _{OL} During Switching of Other Outputs (Output Under Test Not Switching)	5	1 Typ. @25°C		V		
C _I	Input Capacitance	_	_	10	_	10	pF
Co	3-State Output Capacitance		_	15	_	15	pF

^{(1) 3.3}V: min. is @ 3.6 V

4.9 Prerequisite for Switching: ACT Series

			AMBIENT TEMPE		ATURE (T _A) - °	С		
SYMBOL	CHARACTERISTICS	V _{CC} (V)	-40 to +8	5	-55 to+12	25	UNIT	
			MIN	MAX	MIN	MAX		
t _W	Clock Pulse Width	5 ⁽¹⁾	3.9	_	4.5	_	ns	
t _{SU}	Setup Time Data to Clock	5	2	_	2	_	ns	
t _H	Hold Time Data to Clock	5	2.6	_	3	_	ns	
f _{MAX}	Maximum Clock Frequency	5	125	_	110	_	MHz	

^{(1) 5} V: min. is @ 4.5 V

4.10 Switching Characteristics: ACT Series

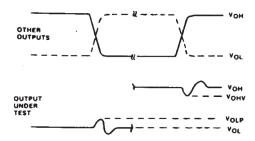
over recommended operating free-air temperature range, ACT Series; t_r , t_l = 3 ns, C_L = 50 pF (unless otherwise noted) (see Load Circuit and Voltage Waveforms)

SYMBOL		V _{CC} (V)	AMBIE				
	CHARACTERISTICS		-40 to	+85	-55 to +	UNIT	
			MIN	MAX	MIN	MAX	
t _{PLH} , t _{PHL}	Propagation Delays: Clock to Q ACT374	5 ⁽¹⁾	2.9	10.2	2.8	11.2	ns
t _{PLH} , t _{PHL}	Clock to Q ACT534	5	3	10.6	2.9	11.7	ns
t _{PLZ} , t _{PHZ} , t _{PZL} , t _{PZH}	Output Enable and Disable to Q ACT374	5	3.7	13.2	3.6	14.5	ns

^{(2) 5} V: min. is @ 5.5 V

⁽³⁾ C_{PD} is used to determine the dynamic power consumption, per flip flop.

over recommended operating free-air temperature range, ACT Series; t_r , t_l = 3 ns, C_L = 50 pF (unless otherwise noted) (see Load Circuit and Voltage Waveforms)


			AMBIE	Γ _A) - °C			
SYMBOL	CHARACTERISTICS	V _{cc} (V)	-40 to	+85	-55 to	UNIT	
			MIN	MAX	MIN	MAX	
t _{PLZ} , t _{PHZ} , t _{PZL} , t _{PZH}	Output Enable and Disable to Q ACT534	5	3.7	13.2	3.6	14.5	ns
C _{PD} (2)	Power Dissipation Capacitance	_		67 Typ.		67 Typ.	pF
V _{OHV}	Min. (Valley) V _{OH} During Switching of Other Outputs (Output Under Test Not Switching)	5		4 Ty _l	o. @ 25°C	V	
V _{OLP}	Max. (Peak) V _{OL} During Switching of Other Outputs (Output Under Test Not Switching)	5	1 Typ. @25°C				V
C _I	Input Capacitance	_	_	10	_	10	pF
Co	3-State Output Capacitance	_	_	15	_	15	pF

^{(1) 5}V: min. is @ 5.5 V

⁽²⁾ C_{PD} is used to determine the dynamic power consumption, per flip flop.

5 Parameter Measurement Information

- A. 1 V_{OHV} AND V_{OLP} ARE MEASURED WITH RESPECT TO A GROUND REFERENCE NEAR THE OUTPUT UNDER TEST.
- B. INPUT PULSES HAVE THE FOLLOWING CHARACTERISTICS: PRR \leq 1 MHz, t_f = 3 ns, t_f = 3 ns, SKEW 1 ns.
- C. R.F. FIXTURE WITH 700-MHz DESIGN RULES REQUIRED. I_C SHOULD BE SOLDERED INTO TEST BOARD ANO BYPASSED WITH 0.1 μ F CAPACITOR. SCOPE ANO PROBES REQUIRE 700-MHz BANDWIDTH
- D. 92CS-42406

Figure 5-1. Simultaneous Switching Transient Waveforms.

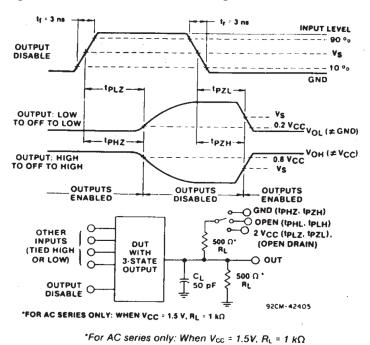
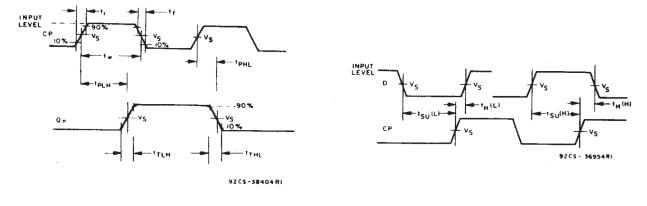
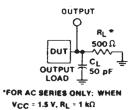




Figure 5-2. Three-state Propagation Delay Waveforms and Test Circuit.

92CS - 4238

Figure 5-3. Propagation Delay Times and Test Circuit.

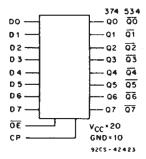
	CDx4AC	CDx4ACT
Input Level	V _{CC}	3 V
Input Switching Voltage, V _S	0.5 V _{CC}	1.5 V
Output Switching Voltage. V _S	0.5 V _{CC}	0.5 V _{CC}

6 Detailed Description

6.1 Overview

The eight flip-flops of the 'AC374 devices are D-type edge-triggered flip-flops. On the positive transition of the clock (CLK) input, the Q outputs are set to the logic levels set up at the data (D) inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines in bus-organized systems without need for interface or pullup components.


OE does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

The RCA-CD54/74AC374 and CD54/74AC534 and the CD54/74ACT374 and CD54/74ACT534 octal D-type, 3-state, positive-edge triggered flip-flops use the RCA ADVANCED CMOS technology. The eight flip-flops enter data into their registers on the LOW-to-HIGH transition of the clock (CP). The Output Enable (OE) controls the 3-state outputs and is independent of the register operation. When the Output Enable (OE) is HIGH, the outputs are in the high-impedance state. The CD54/74AC/ACT374 and CD54/74AC/ACT534 share the same pin configurations, but the CD54/74AC/ACT374 outputs are non-inverted while the CD54/74AC/ACT534 devices have inverted outputs. (For flow-through pin configurations, see CD54/74AC/ACT564 and CD54/74AC/ACT574.)

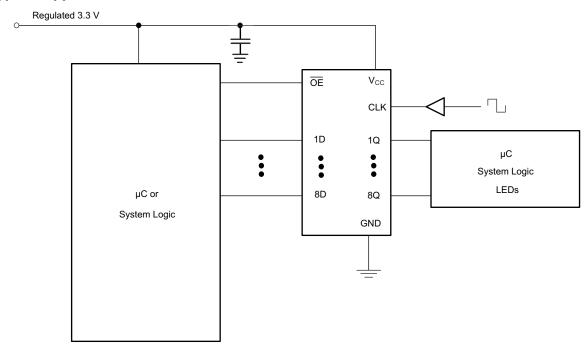
The CD74AC/ACT374 and CD74AC/ACT534 are supplied in 20-lead dual-in-line plastic packages (E suffix) and in 20-lead dual-in-line small-outline plastic packages (M suffix). Both package types are operable over the following temperature ranges: Commercial (0 to 70°C); Industrial (-40 to +85°C); and Extended Industrial/Military (-55 to +125°C).

The CD54AC/ACT374 and CD54AC/ACT534, available in chip form (H suffix), are operable over the -55 to +125°C temperature range.

6.2 Functional Block Diagram

6.3 Device Functional Modes

Table 6-1. Truth Table


INPUT	-e		OUTPUTS				
INFO	3	374	534				
ŌĒ	CP	Dn	Qn	Qn			
L		Н	Н	L			
L		L	L	Н			
L	L	Х	QO	QO			
Н	Х	Х	Z	Z			

7 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

7.1 Typical Application

7.1.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing.

7.1.2 Detailed Design Procedure

- 1. Recommended Input conditions
 - Rise time and fall time specs: See (Δt/ΔV) in Recommended Operating Conditions table.
 - Specified high and low levels: See (V_{IH} and V_{IL}) in *Recommended Operating Conditions* table.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC} .
- 2. Recommend output conditions
 - · Load currents should not exceed 50 mA per output and 100 mA total for the part.
 - Outputs should not be pulled above V_{CC}.

7.2 Power Supply Recommendations

The power supply can be any voltage between the min and max supply voltage rating located in Section 4.3.

Each V_{CC} terminal should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends 0.1 μ F and if there are multiple V_{CC} terminals, then TI recommends .01 μ F or .022 μ F for each power terminal. It is okay to parallel multiple bypass capacitors to reject different frequencies of noise. A 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.

7.3 Layout

7.3.1 Layout Guidelines

When using multiple bit logic devices inputs should not ever float. In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only three of the four buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} whichever make more sense or is more convenient. Floating outputs is generally acceptable, unless the part is a transceiver. If the transceiver has an output enable pin it will disable the outputs section of the part when asserted. This will not disable the input section of the I.O's so they also cannot float when disabled.

8 Device and Documentation Support

8.1 Documentation Support (Analog)

8.1.1 Related Documentation

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 8-1. Related Links

PARTS	PRODUCT FOLDER	DUCT FOLDER SAMPLE & BUY		SAMPLE & BUY TECHNICAL DOCUMENTS		TOOLS & SOFTWARE	SUPPORT & COMMUNITY
CD54AC374	Click here	Click here	Click here	Click here	Click here		
CD74AC374	Click here	Click here	Click here	Click here	Click here		
CD54ACT374	Click here	Click here	Click here	Click here	Click here		
CD74ACT374	Click here	Click here	Click here	Click here	Click here		
CD74AC534	Click here	Click here	Click here	Click here	Click here		

8.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Notifications* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

8.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

8.4 Trademarks

TI E2E™ is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

8.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

8.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

9 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision * (December 1998) to Revision A (March 2024)

Page

- Added Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Device Functional Modes, Application and Implementation section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section

10 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 8-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
						(4)	(5)		
CD54AC374F3A	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	CD54AC374F3A
CD54AC374F3A.A	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	CD54AC374F3A
CD54ACT374F3A	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	CD54ACT374F3A
CD54ACT374F3A.A	Active	Production	CDIP (J) 20	20 TUBE	No	SNPB	N/A for Pkg Type	-55 to 125	CD54ACT374F3A
CD74AC374E	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-55 to 125	CD74AC374E
CD74AC374E.A	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-55 to 125	CD74AC374E
CD74AC374M	Obsolete	Production	SOIC (DW) 20	-	-	Call TI	Call TI	-55 to 125	AC374M
CD74AC374M96	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC374M
CD74AC374M96.A	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC374M
CD74AC534M96	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC534M
CD74AC534M96.A	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	AC534M
CD74ACT374E	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-55 to 125	CD74ACT374E
CD74ACT374E.A	Active	Production	PDIP (N) 20	20 TUBE	Yes	NIPDAU	N/A for Pkg Type	-55 to 125	CD74ACT374E
CD74ACT374M	Obsolete	Production	SOIC (DW) 20	-	-	Call TI	Call TI	-55 to 125	ACT374M
CD74ACT374M96	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT374M
CD74ACT374M96.A	Active	Production	SOIC (DW) 20	2000 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-55 to 125	ACT374M

⁽¹⁾ Status: For more details on status, see our product life cycle.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

PACKAGE OPTION ADDENDUM

www.ti.com 8-Nov-2025

(6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

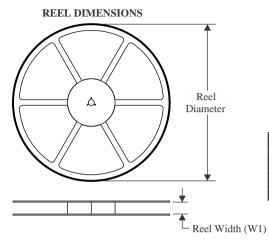
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

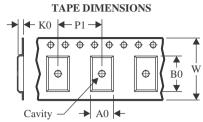
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD54AC374, CD54ACT374, CD74AC374, CD74ACT374:

Catalog: CD74AC374, CD74ACT374

Military: CD54AC374, CD54ACT374


NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Aug-2025

TAPE AND REEL INFORMATION

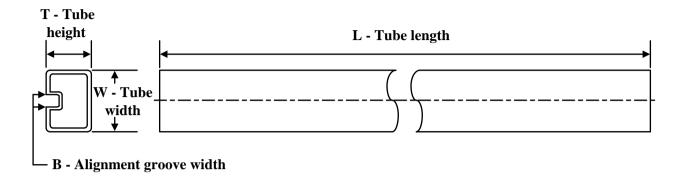
A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74AC374M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
CD74AC534M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1
CD74ACT374M96	SOIC	DW	20	2000	330.0	24.4	10.9	13.3	2.7	12.0	24.0	Q1
CD74ACT374M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.3	2.7	12.0	24.0	Q1

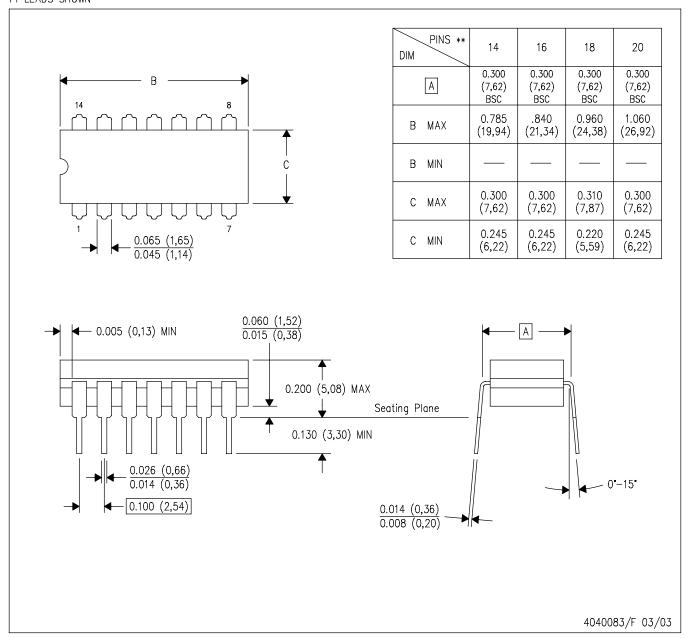
www.ti.com 25-Aug-2025


*All dimensions are nominal

7 till dillitoriolorio di o riorriiridi							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74AC374M96	SOIC	DW	20	2000	356.0	356.0	45.0
CD74AC534M96	SOIC	DW	20	2000	356.0	356.0	45.0
CD74ACT374M96	SOIC	DW	20	2000	356.0	356.0	45.0
CD74ACT374M96	SOIC	DW	20	2000	356.0	356.0	45.0

PACKAGE MATERIALS INFORMATION

www.ti.com 25-Aug-2025


TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
CD74AC374E	N	PDIP	20	20	506	13.97	11230	4.32
CD74AC374E.A	N	PDIP	20	20	506	13.97	11230	4.32
CD74ACT374E	N	PDIP	20	20	506	13.97	11230	4.32
CD74ACT374E.A	N	PDIP	20	20	506	13.97	11230	4.32

14 LEADS SHOWN

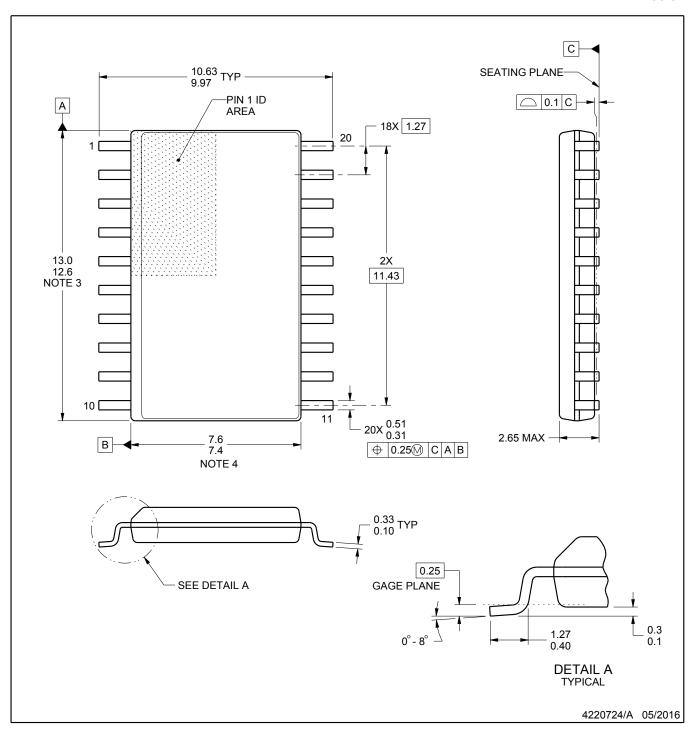
NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

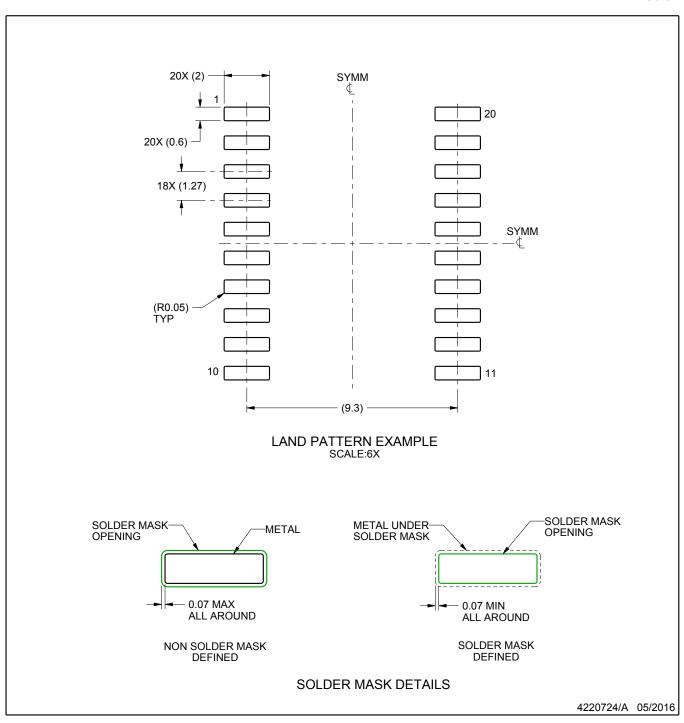
16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

SOIC

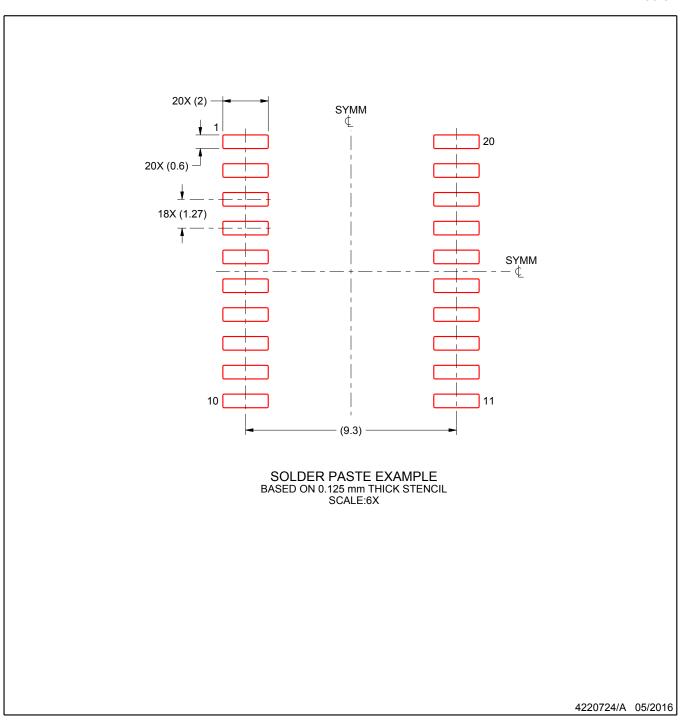
NOTES:


- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.

SOIC


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025