

www.ti.com SLUSBD4 – OCTOBER 2013

2-Series, 3-Series, and 4-Series Li-Ion Battery Pack Manager

Check for Samples: bq30z554-R1

FEATURES

- Fully Integrated 2-Series, 3-Series, and 4-Series Li-Ion or Li-Polymer Cell Battery Pack Manager and Protection
- High Side N-CH Protection FET Drive
- Impedance Track[™] Gas Gauging
- Integrated Cell Balancing While Charging or At Rest
- PF Snapshot and Black Box Technology Analyze Returned Packs
- AC Peak Power Information Capability (TURBO Mode)
- SBS v1.1 Interface
- Low Power Modes
 - Low Power: < 180 μA
 - Sleep < 76 μA
- Complete Set of Advanced Protections:
 - Internal Cell Short
 - Cell Imbalance
 - Cell Voltage
 - Overcurrent
 - Temperature
 - FET Protection
- Sophisticated Charge Algorithms
 - JEITA
 - Enhanced Charging
 - Adaptive Charging
 - Cell Balancing While Charging or At Rest
- General Purpose Output for Power Interrupt
- Diagnostic Lifetime Data Monitor
- SHA-1 Authentication
- Small Package: TSSOP

APPLICATIONS

- Notebook/Netbook PCs
- Medical and Test Equipment
- Portable Instrumentation

DESCRIPTION

The bq30z554-R1 device is a fully integrated Impedance Track™ gas gauge and analog monitoring single-package solution that provides protection and monitoring with authentication for 2-series, 3-series, and 4-series cell Li-lon battery packs. The bq30z554-R1 device incorporates sophisticated algorithms that offer cell balancing while charging or at rest.

The device communicates via an SBS v1.1 interface, providing high accuracy cell parameter reporting and control of battery pack operation, and can be designed into systems that require AC peak power (TURBO mode), using a method to ensure that system performance is not disrupted.

An optimum balance of quick response hardwarebased protection along with intelligent CPU control delivers an ideal pack solution. The device has flexible user-programmable settings of critical system parameters, such as voltage, current, temperature, and cell imbalance, among other conditions.

The bq30z554-R1 device has advanced charge algorithms, including JEITA support, enhanced cell charging, and adaptive charging compensating charge losses, enabling faster charging. In addition, the bq30z554-R1 device can monitor critical parameters over the life of the battery pack, tracking usage conditions.

A general purpose output is used for power interruption, employing an external push button switch.

The advanced snapshot and black box functionality show critical information for analysis of returned battery packs.

SHA-1 authentication with secure memory for authentication keys enables identification for genuine battery packs beyond doubt.

A

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Impedance Track is a trademark of Texas Instruments.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION

T	PART NUMBER	PACKAGE	PACKAGE	PACKAGE	ORDERING II	NFORMATION ⁽¹⁾
'A	PART NUMBER	PACKAGE	DESIGNATOR	MARKING	TUBE ⁽²⁾	TAPE AND REEL(3)
–40°C to 85°C	bq30z554-R1	TSSOP-30	DBT	bq30z554-R1	bq30z554DBT-R1	bq30z554DBTR-R1

- For the most current package and ordering information, see the Package Option Addendum at the end of the document, or see the TI website at www.ti.com.
- A single tube quantity is 50 units.
- A single reel quantity is 2000 units.

THERMAL INFORMATION

		bq30z554-R1	
	THERMAL METRIC ⁽¹⁾	TSSOP	UNITS
		30 PINS	
θ _{JA, High K}	Junction-to-ambient thermal resistance ⁽²⁾	73.1	
$\theta_{JC(top)}$	Junction-to-case(top) thermal resistance (3)	17.5	
θ_{JB}	Junction-to-board thermal resistance (4)	34.5	°C AA/
ΨЈТ	Junction-to-top characterization parameter (5)	0.3	°C/W
Ψ_{JB}	Junction-to-board characterization parameter (6)	30.3	
$\theta_{JC(bottom)}$	Junction-to-case(bottom) thermal resistance (7)	n/a	

- For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. (1)
- The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
- The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
- The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
- The junction-to-top characterization parameter, ψ_{JT} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).
- The junction-to-board characterization parameter, ψ_{JB} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).
- The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

Submit Documentation Feedback

Copyright © 2013, Texas Instruments Incorporated

STRUMENTS

TYPICAL IMPLEMENTATION

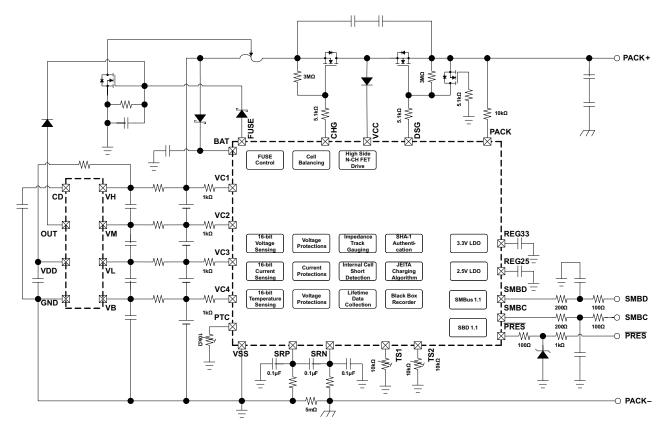


Figure 1. bq30z554-R1 Implementation

TERMINAL FUNCTIONS

PIN NAME	PIN NUMBER	TYPE	DESCRIPTION
CHG	1	0	Discharge N-FET gate drive
BAT	2	Р	Alternate power source
VC1	3	I	Sense input for positive voltage of the top-most cell in the series, and cell balancing input for the top-most cell in the series
VC2	4	I	Sense input for positive voltage of the third lowest cell in the series, and cell balancing input for the third lowest cell in the series
VC3	5	I	Sense input for positive voltage of the second lowest cell in the series, and cell balancing input for the second lowest cell in the series
VC4	6	I	Sense input for positive voltage of the lowest cell in the series, and cell balancing input for the lowest cell in the series
VSS	7	Р	Device ground
TS1	8	Al	Temperature sensor 1 thermistor input
SRP	9	Al	Differential coulomb counter input
TS2	11	Al	Temperature sensor 2 thermistor input
SRN	10	Al	Differential coulomb counter input
PRES	12	I	Host system present input
SMBD	13	I/OD	SBS 1.1 data line
NC	14	_	Not connected, connect to VSS
SMBC	15	I/OD	SBS 1.1 clock line
GPIO	16	I/OD	General Purpose Input-Output
NC	17,18,19,20	_	Not connected
RBI	21	Р	RAM backup
REG25	22	Р	2.5-V regulator output
VSS	23	Р	Device ground
REG33	24	Р	3.3-V regulator output
PTC	25	_	Test pin connect to VSS
FUSE	26	0	Fuse drive
VCC	27	Р	Power supply voltage
GPOD	28	I/OD	High voltage general purpose I/O
PACK	29	Р	Alternate power source
DSG	30	0	Charge N-FET gate drive

PINOUT DIAGRAM

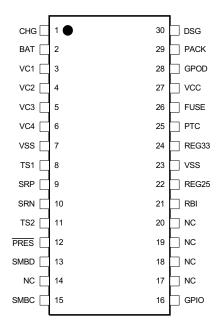
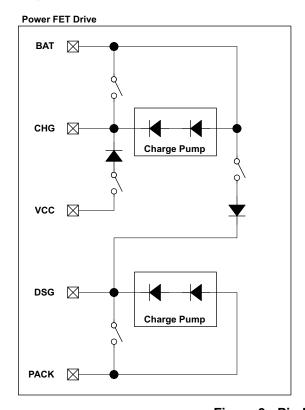



Figure 2. bq30z554-R1 Pinout Diagram

PIN EQUIVALENT DIAGRAMS

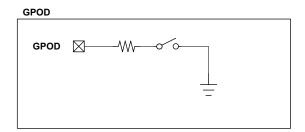


Figure 3. Pin Equivalent Diagram 1

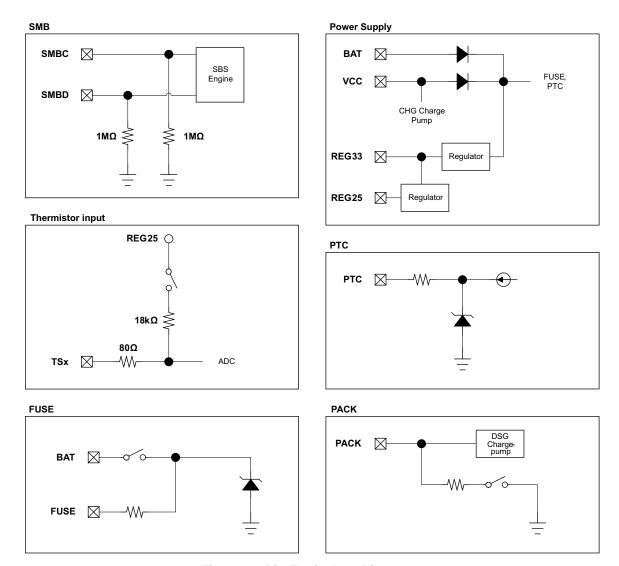


Figure 4. Pin Equivalent Diagram 2

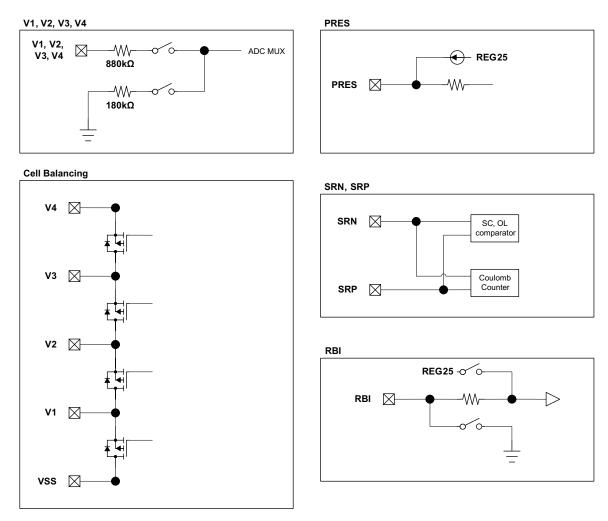


Figure 5. Pin Equivalent Diagram 3

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature range (unless otherwise noted)(1)

DESCRIPTION	PINS	VALUE
Supply voltage range, V _{MAX}	VCC, PTC, PACK w.r.t. Vss	−0.3 V to 34 V
	VC1, BAT	$\ensuremath{\text{V}_{\text{VC2}}} - 0.3 \ensuremath{\text{ V}}$ to $\ensuremath{\text{V}_{\text{VC2}}} + 8.5$ or 34 V, whichever is lower
	VC2	V_{VC3} – 0.3 V to V_{VC3} + 8.5 V
	VC3	V_{VC4} – 0.3 V to V_{VC4} + 8.5 V
Input voltage range, V _{IN}	VC4	V_{SRP} – 0.3 V to V_{SRP} + 8.5 V
	SRP, SRN	–0.3 V to 0.3 V
	SMBC, SMBD	V_{SS} – 0.3 V to 6.0 V
	TS1, TS2, PRES, GPIO	$-0.3 \text{ V to V}_{\text{REG25}} + 0.3 \text{ V}$
	DSG	$-0.3~{ m V}$ to ${ m V}_{ m PACK}$ + 20 V or ${ m V}_{ m SS}$ + 34 V, whichever is lower
Output voltage range, V _O	CHG	$-0.3~{ m V}$ to ${ m V}_{ m BAT}$ + 20 V or ${ m V}_{ m SS}$ + 34 V, whichever is lower
Suiput voitage range, vo	GPOD, FUSE	−0.3 V to 34 V
	RBI, REG25	−0.3 V to 2.75 V
	REG33	−0.3 V to 5.0 V
Maximum VSS current, I _{SS}		50 mA
Current for cell balancing, I _{CB}		10 mA
ESD Rating	HBM, VCx Only	1 kV
Functional Temperature, T _{FUNC}		−40 to 110 °C
Storage temperature range, T _{STG}		−65 to 150 °C
Lead temperature (soldering, 10 s), T _S	OLDER	300 °C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Typical values stated where $T_A = 25$ °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85 °C and VCC = 3.8 V to 25 V (unless otherwise noted)

		MIN	TYP	MAX	UNIT
Complexional	VCC, PACK			25	V
Supply voltage	BAT	3.8		V _{VC2} + 5.0	
V _{STARTUP}	Start up voltage at PACK	3.0		5.5	V
	VC1, BAT	V _{VC2}		V _{VC2} + 5.0	
	VC2	V _{VC3}		V _{VC3} + 5.0	
	VC3	V _{VC4}		V _{VC4} + 5.0	\ /
V Input valtage renge	VC4	V _{SRP}		V _{SRP} + 5.0	V
V _{IN} Input voltage range	VCn - VC(n+1), (n=1, 2, 3, 4)	0		5.0	
	PACK			25	
	PTC	0		2	V
	SRP to SRN	-0.2		0.2	V
C _{REG33} External 3.3-V REG capacitor		1			μF
C _{REG25} External 2.5-V REG capacitor		1			μF
T _{OPR} Operating temperature		-40		85	°C

Product Folder Links: bq30z554-R1

STRUMENTS

ELECTRICAL CHARACTERISTICS: Supply Current

Typical values stated where TA = 25 °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85 °C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Icc	Normal	CHG on, DSG on, no Flash write	410			μΑ
	Sleep	CHG off, DSG on, no SBS Communication		129		μA
		CHG off, DSG off, no SBS Communication		83		μA
	Shutdown				1	μΑ

ELECTRICAL CHARACTERISTICS: Power On Reset (POR)

Typical values stated where TA = 25 °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85 °C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IT}	Negative-going voltage input	At REG25	1.9	2.0	2.1	V
V _{HYS}	POR Hysteresis	At REG25	65	125	165	mV

ELECTRICAL CHARACTERISTICS: WAKE FROM SLEEP

Typical values stated where TA = 25 °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85 °C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	V _{WAKE} Threshold	V _{WAKE} = 1.2 mV	0.2	1.2	2.0	mV
V _{WAKE}	V Threehold	V _{WAKE} = 2.4 mV	0.4	2.4	3.6	
VWAKE	V _{WAKE} i nresnoid	V _{WAKE} = 5 mV	2.0	5.0	2.0	
		V _{WAKE} = 10 mV	5.3	10	13	
V _{WAKE_TCO}	Temperature drift of VWAKE accuracy			0.5		%/°C
t _{WAKE}	Time from application of current and wake of bq30z554-R1			0.2	1	ms

ELECTRICAL CHARACTERISTICS: RBI RAM Backup

Typical values stated where TA = 25 °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85 °C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	V _{RB} > V _{(RB)MIN} , VCC < VIT		20	1100	nA	
I _(RBI)	RBI data-retention input current	VRB > V _{(RB)MIN} , VCC < VIT, T _A = 0 °C to 70 °C			500	
$V_{(RBI)}$	RBI data-retention voltage		1			V

ELECTRICAL CHARACTERISTICS: 3.3-V Regulator

Typical values stated where TA = 25 °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85 °C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		$3.8 \text{ V} < \text{VCC or BAT} \le 5 \text{ V},$ $I_{CC} \le 4 \text{ mA}$	2.4		3.5	V
V _{REG33}	Regulator output voltage	5 V < VCC or BAT \leq 6.8 V, $I_{CC} \leq$ 13 mA	3.1	3.3	3.5	V
		$6.8 \text{ V} < \text{VCC} \text{ or BAT} \le 20 \text{ V},$ $I_{\text{CC}} \le 30 \text{ mA}$	3.1	3.3	3.5	V
I _{REG33}	Regulator Output Current		2			mA

Product Folder Links :bq30z554-R1

ELECTRICAL CHARACTERISTICS: 3.3-V Regulator (continued)

Typical values stated where TA = 25 °C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85 °C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _(VDDTEMP)	Regulator output change with temperature	VCC or BAT = 14.4 V, IREG33 = 2 mA		0.2		%
$\Delta V_{(VDDLINE)}$	Line regulation	VCC or BAT = 14.4 V, IREG33 = 2 mA		1	13	mV
$\Delta V_{(VDDLOAD)}$	Load regulation	VCC or BAT = 14.4 V, IREG33 = 2 mA		5	18	mV
	Command limit	VCC or BAT = 14.4 V, REG33 = 3 V			70	mA
I(REG33MAX)	Current limit	VCC or BAT = 14.4 V, REG33 = 0 V			33	

ELECTRICAL CHARACTERISTICS: 2.5-V Regulator

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to $85^{\circ}C$ and VCC = 3.8 V to 25 V (unless otherwise noted

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{REG25}	Regulator output voltage	10 1	2.35	2.5	2.55	V
I _{REG25}	Regulator Output Current	I _{REG25} = 10 mA	3			mA
$\Delta V_{(VDDTEMP)}$	Regulator output change with temperature	VCC or BAT = 14.4 V, IREG25 = 2 mA		0.25		%
$\Delta V_{(VDDLINE)}$	Line regulation	VCC or BAT = 14.4 V, IREG25 = 2 mA		1	4	mV
$\Delta V_{(VDDLOAD)}$	Load regulation	VCC or BAT = 14.4 V, IREG25 = 2 mA		20	40	mV
	Command limit	VCC or BAT = 14.4 V, REG25 = 2.3 V			65	mA
I(REG33MAX)	Current limit	VCC or BAT = 14.4 V, REG25 = 0 V			23	

ELECTRICAL CHARACTERISTICS: PRES, SMBD, SMBC, GPIO

Typical values stated where TA = 25° C and VCC = 14.4 V, Min/Max values stated where TA = -40° C to 85° C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IH}	High-level input	PRES, SMBD, SMBC, GPIO	2.0			V
V _{IL}	Low-level input	PRES, SMBD, SMBC, GPIO IL = -0.5 mA			0.8	V
V _{OL}	Low-level output voltage	SMBD, SMBC, GPIO, IL = 7 mA			0.4	V
C _{IN}	Input capacitance	PRES, SMBD, SMBC, GPIO		5		pF
I _{LKG}	Input leakage current	PRES, SMBD, SMBC, GPIO			1	μA
I _{WPU}	Weak Pull Up Current	PRES, GPIO, V _{OH} = V _{REG25} – 0.5 V	60		120	μA
R _{PD(SMBx)}	SMBC, SMBD Pull-Down	$T_A = -40 ^{\circ}\text{C} \text{ to } 100 ^{\circ}\text{C}$	550	775	1000	kΩ

Product Folder Links :bq30z554-R1

STRUMENTS

ELECTRICAL CHARACTERISTICS: CHG, DSG FET Drive

Typical values stated where TA = 25° C and VCC = 14.4 V, Min/Max values stated where T_A = -40° C to 85° C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		$V_{O(FETONDSG)} = V_{(DSG)} - V_{PACK},$ VGS connect 10 M Ω , VCC 3.8 V to 8.4 V	8.0	9.7	12	V
$V_{(FETON)}$	Output voltage, charge, and	V _{O(FETONDSG)} = V _(DSG) - V _{PACK} , VGS connect 10 MΩ, VCC > 8.4 V	9.0	11	12	V
(121014)	discharge FETs on	$V_{O(FETONCHG)} = V_{(CHG)} - V_{BAT}, V_{GS}$ connect 10 M Ω , VCC 3.8 V to 8.4 V	8.0	9.7	12	V
		$V_{O(FETONCHG)} = V_{(CHG)} - V_{BAT}, V_{GS}$ connect 10 M Ω , VCC > 8.4 V	9.0	11	12	V
V _(FETOFF)	Output voltage, charge and discharge FETs off	$VO_{(FETOFFDSG)} = V_{(DSG)} - V_{PACK}$	-0.4		0.4	V
		$V_{O(FETOFFCHG)} = V_{(CHG)} - VBAT$	-0.4		0.4	V
t _r Rise time		$\begin{array}{l} C_L = 4700 \ pF \\ R_G = 5.1 \ k\Omega \\ VCC < 8.4 \\ V_{DSG} : V_{BAT} \ to \ V_{BAT} + 4 \ V, \\ V_{CHG} : V_{PACK} \ to \ V_{PACK} + 4 \ V \end{array}$		800	1400	μs
	Rise time	$\begin{array}{l} C_L = 4700 \text{ pF} \\ R_G = 5.1 \text{ k}\Omega \\ \text{VCC} > 8.4 \\ \text{V}_{DSG} : \text{V}_{BAT} \text{ to V}_{BAT} + 4 \text{ V}, \\ \text{V}_{CHG} : \text{V}_{PACK} \text{ to V}_{PACK} + 4 \text{ V} \end{array}$		200	500	μs
t _f	Fall time	$\begin{array}{c} C_L = 4700 \text{ pF} \\ R_G = 5.1 \text{ k}\Omega \\ V_{DSG} : V_{BAT} + V_{O(FETONDSG)} \text{ to } V_{BAT} + 1 \text{ V} \\ V_{CHG} : V_{PACK} + V_{O(FETONCHG)} \text{ to} \\ V_{PACK} + 1 \text{ V} \end{array}$		80	200	μѕ

ELECTRICAL CHARACTERISTICS: GPOD

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where TA = -40°C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{PU_GPOD}	GPOD Pull Up Voltage				V_{CC}	V
V _{OL GPOD}	GPOD Output Voltage Low	I _{OL} = 1 mA	0.3			V

ELECTRICAL CHARACTERISTICS: FUSE

Typical values stated where TA = 25° C and VCC = 14.4 V, Min/Max values stated where TA = -40° C to 85° C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{OH(FUSE)} High Level FUSE Output	High Land FUE Outset	VCC = 3.8 V to 9 V	2.4		8.5	V
	High Level FUSE Output	VCC = 9 V to 25 V	7	8	9	V
			2.8			V
V _{IH(FUSE)}	Weak Pull Up Current in off state	Ensured by design. Not production tested.		100		nA
t _{R(FUSE)}	FUSE Output Rise Time	C _L = 1 nF, VCC = 9 V to 25V, V _{OH(FUSE)} = 0 V to 5 V		5	20	μs
Z _{O(FUSE)}	FUSE Output Impedance			2	5	kΩ

Copyright © 2013, Texas Instruments Incorporated Product Folder Links: bq30z554-R1

ELECTRICAL CHARACTERISTICS: PTC Thermistor Support

Typical values stated where $TA = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
R _{PTC}	PTC	V _{PTC} = 0 to 2 V,				
		$T_A = -40$ °C to 110 °C	1.3	2	2.7	МΩ
I _{O(PTC)}	PTC	V _{PTC} = 0 to 2 V				
		$T_A = -40$ °C to 110 °C	-450	-370	-230	nA
t _{PTC}	PTC Blanking Delay	$T_A = -40$ °C to 110 °C	60	80	110	ms

ELECTRICAL CHARACTERISTICS: COULOMB COUNTER

Typical values stated where $TA = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Input voltage range	SRP – SRN	-0.20		0.25	V
	Conversion time	Single conversion		250		ms
	Resolution (no missing codes)		16			bits
	Effective resolution	Single conversion, signed	15			bits
V _{IN}	Offset error	Post Calibrated		10		μV
	Offset error drift			0.3	0.5	μV/°C
	Full-scale error		-0.8%	0.2%	0.8%	
	Full-scale error drift				150	PPM/°C
	Effective input resistance		2.5			ΜΩ

ELECTRICAL CHARACTERISTICS: VC1, VC2, VC3, VC4

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{IN}	Input voltage range	VC4 - VC3, VC3 - VC2, VC2 - VC1, VC1 - VSS	-0.20		8	V
	Conversion time	Single conversion		32		ms
	Resolution (no missing codes)		16			bits
	Effective resolution	Single conversion, signed	15			bits
R _(BAL)	$R_{DS(ON)}$ for internal FET at V_{DS} > 2 V	V _{DS} = VC4 - VC3, VC3 - VC2, VC2 - VC1, VC1 - VSS	200	310	430	Ω
	$R_{DS(ON)}$ for internal FET at V_{DS} > 4 V	V _{DS} = VC4 - VC3, VC3 - VC2, VC2 - VC1, VC1 - VSS	60	125	230	Ω

ELECTRICAL CHARACTERISTICS: TS1, TS2

Typical values stated where $TA = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

0.0 1 to 20 1 (dimensional media)								
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
R	Internal Pull Up Resistor		16.5	17.5	19.0	ΚΩ		
R _{DRIFT}	Internal Pull Up Resistor Drift from 25 °C				200	PPM/°C		
R _{PAD}	Internal Pin Pad resistance			84		Ω		

Product Folder Links :bq30z554-R1

12

www.ti.com SLUSBD4 – OCTOBER 2013

ELECTRICAL CHARACTERISTICS: TS1, TS2 (continued)

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Input voltage range	TS1 – VSS, TS2 – VSS	-0.20		0.8 x V _{REG2}	V
V _{IN}	Conversion Time			16		ms
	Resolution (no missing codes)		16			Bits
	Effective resolution		11	12		Bits

ELECTRICAL CHARACTERISTICS: Internal Temperature Sensor

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _(TEMP)	Temperature sensor voltage		-1.9	-2.0	-2.1	mV/°C
	Conversion Time			16		ms
	Resolution (no missing codes)		16			Bits
	Effective resolution		11	12		Bits

ELECTRICAL CHARACTERISTICS: Internal Thermal Shutdown

Typical values stated where $TA = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
T _{MAX}	Maximum REG33 temperature		125		175	
T _{RECOVER}	Recovery hysteresis temperature			10		°C
t _{PROTECT}	Protection time			5		μs

ELECTRICAL CHARACTERISTICS: High Frequency Oscillator

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _(OSC)	Operating frequency of CPU Clock			4.194		MHz
f _(EIO)	Frequency error ⁽¹⁾⁽²⁾	$T_A = -20$ °C to 70 °C	-2%	±0.25%	2%	
		$T_A = -40 ^{\circ}\text{C} \text{ to } 85 ^{\circ}\text{C}$	-3%	±0.25%	3%	
t _(SXO)	Start-up time (3)	$T_A = -25$ °C to 85 °C		3	6	ms

- (1) The frequency error is measured from 4.194 MHz.
- (2) The frequency drift is included and measured from the trimmed frequency at $V_{REG25} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.
- (3) The startup time is defined as the time it takes for the oscillator output frequency to be ±3% when the device is already powered.

ELECTRICAL CHARACTERISTICS: Low Frequency Oscillator

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _(LOSC)	Operating frequency			32.768		kHz
f _(LEIO)	Frague 200 (1)(2)	$T_A = -20 ^{\circ}\text{C}$ to 70 $^{\circ}\text{C}$	-1.5%	±0.25%	1.5%	
	Frequency error ⁽¹⁾⁽²⁾	$T_A = -40$ °C to 85 °C	-2.5%	±0.25%	2.5%	
t _(LSXO)	Start-up time ⁽³⁾	$T_A = -25$ °C to 85 °C			100	μs

- (1) The frequency drift is included and measured from the trimmed frequency at VCC = 2.5 V, T_A = 25 °C.
- 2) The frequency error is measured from 32.768 kHz.
- (3) The startup time is defined as the time it takes for the oscillator output frequency to be ±3 %.

Submit Documentation Feedback

ELECTRICAL CHARACTERISTICS: Internal Voltage Reference

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V_{REF}	Internal Reference Voltage		1.215	1.225	1.230	V
V	Internal Defenders Vallage Drift	$T_A = -25$ °C to 85 °C		±80		PPM/°C
V _{REF_DRIFT}	Internal Reference Voltage Drift	T _A = 0 °C to 60 °C		±50		PPM/°C

ELECTRICAL CHARACTERISTICS: Flash

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER ⁽¹⁾	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Data retention		10			Years
		Data Flash	20k			Cycles
	Flash programming write-cycles	Instruction Flash	1k			Cycles
I _{CC(PROG_DF)}	Data Flash-write supply current	$T_A = -40$ °C to 85°C		3	4	mA
I _{CC(ERASE_DF)} Data Flash-erase supply current		$T_A = -40$ °C to 85°C		3	18	mA

⁽¹⁾ Assured by design. Not production tested.

ELECTRICAL CHARACTERISTICS: OCD Current Protection

Typical values stated where $T_A = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
M	OCD detection threshold voltage	RSNS = 0	50		200	mV
$V_{(OCD)}$	range, typical	RSNS = 1	25		100	mV
۸١/	OCD detection threshold voltage	RSNS = 0		10		mV
$\Delta V_{(OCDT)}$	program step	RSNS = 1		5		mV
V _(OFFSET)	OCD offset		-10		10	mV
V _(Scale_Err)	OCD scale error		-10		10	%
t _(OCDD)	Overcurrent in Discharge Delay		1		31	ms
t _(OCDD_STEP)	OCDD Step options			2		ms
t _(DETECT)	Current fault detect time	VSRP – SRN = VTHRESH + 12.5 mV			160	μs
t _{ACC}	Overcurrent and Short Circuit delay time accuracy	Accuracy of typical delay time	-20		20	%

ELECTRICAL CHARACTERISTICS: SCD1 Current Protection

Typical values stated where $TA = 25^{\circ}C$ and VCC = 14.4 V, Min/Max values stated where $T_A = -40^{\circ}C$ to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
M	SCD1 detection threshold voltage	RSNS = 0	100		450	mV
V _(SDC1)	range, typical	RSNS = 1	50		225	mV
A\/	SCD1 detection threshold voltage program step	RSNS = 0		50		mV
ΔV _(SCD1T)		RSNS = 1		25		mV
V _(OFFSET)	SCD1 offset		-10		10	mV
V _(Scale_Err)	SCD1 scale error		-10		10	%
	Short Circuit in Discharge Delay	AFE.STATE_CNTL[SCDDx2] = 0	0		915	μs
t(SCD1D)	Short Circuit in Discharge Delay	AFE.STATE_CNTL[SCDDx2] = 1	0		1830	μs
	SCD4D Stop ontions	AFE.STATE_CNTL[SCDDx2] = 0		61		μs
t(SCD1D_STEP)	SCD1D Step options	AFE.STATE_CNTL[SCDDx2] = 1		122		μs

Product Folder Links :bq30z554-R1

TRUMENTS

ELECTRICAL CHARACTERISTICS: SCD1 Current Protection (continued)

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and $T_$ 3.8 V to 25 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _(DETECT)	Current fault detect time	VSRP-SRN = VTHRESH + 12.5 mV			160	μs
t _{ACC}	Overcurrent and Short Circuit delay time accuracy	Accuracy of typical delay time	-20		20	%

ELECTRICAL CHARACTERISTICS: SCD2 Current Protection

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
V	SCD2 detection threshold voltage	RSNS = 0	100		450	mV
V _(SDC2)	range, typical	RSNS = 1	50		225	mV
A) /	SCD2 detection threshold voltage	RSNS = 0		50		mV
$\Delta V_{(SCD2T)}$	program step	RSNS = 1		25		mV
V _(OFFSET)	SCD2 offset		-10		10	mV
V _(Scale_Err)	SCD2 scale error		-10		10	%
	Chart Cincuit in Dischause Dalau	AFE.STATE_CNTL[SCDDx2] = 0	0		458	μs
t(SCD1D)	Short Circuit in Discharge Delay	AFE.STATE_CNTL[SCDDx2] = 1	0		915	μs
	CODOD Cton ontions	AFE.STATE_CNTL[SCDDx2] = 0		30.5		μs
t(SCD2D_STEP)	SCD2D Step options	AFE.STATE_CNTL[SCDDx2] = 1		61		μs
t _(DETECT)	Current fault detect time	VSRP – SRN = VTHRESH + 12.5 mV			160	μs
t _{ACC}	Overcurrent and Short Circuit delay time accuracy	Accuracy of typical delay time	-20		20	%

ELECTRICAL CHARACTERISTICS: SCC Current Protection

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
M	SCC detection threshold voltage	RSNS = 0	-100		-300	mV
$V_{(SCCT)}$	range, typical	RSNS = 1	-50		-225	mV
A) /	SCC detection threshold voltage	RSNS = 0		-50		mV
$\Delta V_{(SCCDT)}$	program step	RSNS = 1		-25		mV
V _(OFFSET)	SCC offset		-10		10	mV
V _(Scale_Err)	SCC scale error		-10		10	%
t _(SCCD)	Short Circuit in Charge Delay		0		915	ms
t(SCCD_STEP)	SCCD Step options			61		ms
t _(DETECT)	Current fault detect time	VSRP - SRN = VTHRESH + 12.5 mV			160	μs
t _{ACC}	Overcurrent and Short Circuit delay time accuracy	Accuracy of typical delay time	-20		20	%

ELECTRICAL CHARACTERISTICS: SBS Timing Characteristics

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	,					
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{SMB}	SMBus operating frequency	SLAVE mode, SMBC 50% duty cycle	10		100	kHz
f _{MAS}	SMBus master clock frequency	MASTER mode, no clock low slave extend		51.2		kHz

Copyright © 2013, Texas Instruments Incorporated

ELECTRICAL CHARACTERISTICS: SBS Timing Characteristics (continued)

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{BUF}	Bus free time between start and stop		4.7			μs
t _{HD:STA}	Hold time after (repeated) start		4.0			μs
t _{SU:STA}	Repeated start setup time		4.7			μs
t _{SU:STO}	Stop setup time		4.0			μs
t _{HD:DAT}	Data hold time		300			ns
t _{SU:DAT}	Data setup time		250			ns
t _{TIMEOUT}	Error signal/detect	See (1)	25		35	ms
t _{LOW}	Clock low period		4.7			μs
t _{HIGH}	Clock high period	See (2)			Disabled	
t _{HIGH}	Clock high period	See (2)	4.0		50	μs
t _{LOW:SEXT}	Cumulative clock low slave extend time	See ⁽³⁾			25	ms
t _{LOW:MEXT}	Cumulative clock low master extend time	See ⁽⁴⁾			10	ms
t _F	Clock/data fall time	See ⁽⁵⁾			300	ns
t _R	Clock/data rise time	See (6)			1000	ns

- (1) The bq30z554-R1 times out when any clock low exceeds t_{TIMEOUT} .
- (2) t_{HIGH}, Max, is the minimum bus idle time. SMBC = 1 for t > 50 μs causes reset of any transaction involving bq30z554-R1 in progress. This specification is valid when the THIGH_VAL = 0. If THIGH_VAL = 1 then the value of THIGH is set by THIGH_1,2 and the timeout is not SMBus standard.
- (3) t_{LOW:SEXT} is the cumulative time a slave device is allowed to extend the clock cycles in one message from initial start to the stop.
- (4) t_{LOW:MEXT} is the cumulative time a master device is allowed to extend the clock cycles in one message from initial start to the stop.
- (5) Rise time $tR = V_{ILMAX} 0.15$ to $(V_{IHMIN} + 0.15)$
- (6) Fall time tF = 0.9 V_{DD} to $(V_{ILMAX} 0.15)$

ELECTRICAL CHARACTERISTICS: SBS XL Timing Characteristics

Typical values stated where TA = 25°C and VCC = 14.4 V, Min/Max values stated where $T_A = -40$ °C to 85°C and VCC = 3.8 V to 25 V (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{SMBXL}	SMBus XL operating frequency	SLAVE mode	40	•	400	kHz
t _{BUF}	Bus free time between start and stop		4.7			μs
t _{HD:STA}	Hold time after (repeated) start		4.0			μs
t _{SU:STA}	Repeated start setup time		4.7			μs
t _{SU:STO}	Stop setup time		4.0			μs
t _{TIMEOUT}	Error signal/detect	See (1)	5		20	ms
t_{LOW}	Clock low period				20	μs
t _{HIGH}	Clock high period	See (2)			20	μs

- (1) The bq30z554-R1 times out when any clock low exceeds t_{TIMEOUT} .
- (2) t_{HIGH}, Max, is the minimum bus idle time.

RUMENTS

Product Folder Links: bq30z554-R1

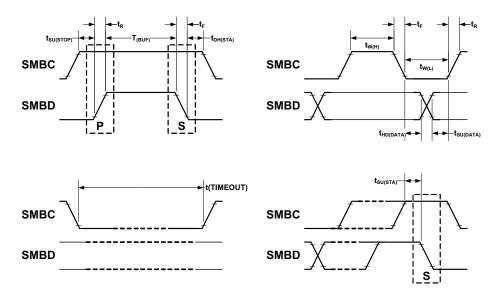


Figure 6. SMBus Timing Diagram

FEATURE SET

Protections Safety Features

The bq30z554-R1 supports a wide range of battery and system protection features that can easily be configured. The Protections safety features include:

- Cell Undervoltage Protection
- Cell Undervoltage I*R Compensated Protection
- Cell Overvoltage Protection
- Overcurrent in Charge Protection 1 and 2
- Overcurrent in Discharge Protection 1 and 2
- · Overload in Discharge Protection
- Short Circuit in Charge Protection
- Short Circuit in Discharge Protection 1 and 2
- Overtemperature in Charge Protection
- Overtemperature in Discharge Protection
- Overtemperature FET protection
- SBS Host Watchdog Protection
- Precharge Timeout Protection
- Fast Charge Timeout Protection
- Overcharge Protection
- Overcharging Current Protection
- Overcharging Voltage Protection

Permanent Fail Safety Features

The FUSE pin can be used to blow an in-line fuse to permanently disable the battery pack from charging or discharging. Upon a Permanent Fail event trigger, critical system information is written to non-volatile memory to simplify failure analysis. In addition, the black box stores the sequence of safety events also into non-volatile memory to simplify failure analysis. The Permanent Fail safety features include:

- Cell Undervoltage Protection
- Cell Overvoltage Protection
- Copper Deposition
- Overtemperature Cell
- Overtemperature FET
- QMAX Imbalance
- Cell Balancing
- Capacity Degradation
- Impedance
- · Voltage Imbalance at Rest
- Voltage Imbalance Active
- Charge FET and Discharge FET
- Thermistor
- Chemical FUSE
- AFE Register
- AFE Communication
- 2nd-Level Protection
- PTC
- Instruction Flash
- Open Cell Tab Connection
- Data Flash

Charge Control Features

The bq30z554-R1 Charge Control features include:

- Supports JEITA temperature ranges T1, T2, T3, T4, T5, T6. Reports charging voltage and charging current, according to the active temperature range.
- Handles more complex charging profiles. Allows for splitting the standard temperature range into two subranges, and allows for varying the charging current according to the cell voltage.
- Reports the appropriate charging current needed for constant current charging and the appropriate charging voltage needed for constant voltage charging to a smart charger using SMBus broadcasts.
- Determines the chemical state of charge of each battery cell using Impedance Track and can reduce the charge difference of the battery cells in a fully charged state of the battery pack, gradually using the cell balancing algorithm during rest and charging. This prevents fully charged cells from overcharging and causing excessive degradation, and also increases the usable pack energy by preventing premature charge termination.
- Supports precharging/zero-volt charging
- Supports charge inhibit and charge suspend if the battery pack temperature is out of temperature range.
- · Reports charging fault and also indicates charge status via charge and discharge alarms.

Gas Gauging

The bq30z554-R1 uses the Impedance Track technology to measure and calculate the available charge in battery cells. The achievable accuracy is better than 1% error over the lifetime of the battery and there is no full charge or discharge learning cycle required. See the *Theory and Implementation of Impedance Track Battery Fuel-Gauging Algorithm* application report (SLUA364B) for further details.

Lifetime Data Logging Features

The bq30z554-R1 offers extended lifetime data logging where important measurements are stored for warranty and analysis purposes. The data monitored includes *lifetime*:

- Maximum cell voltage cell0, cell1, cell2, cell3
- Minimum cell voltage cell0, cell1, cell2, cell3
- Maximum cell voltage delta
- Maximum charge and discharge current
- Maximum average discharge current
- Maximum average discharge power
- Maximum cell temperature
- Minimum cell temperature
- Maximum cell temperature delta
- Maximum device temperature
- Minimum device temperature
- Maximum FET temperature
- Total accumulated safety events and last safety event in term of charging cycle
- Total accumulated charging events and charging events
- · Total accumulated gauging events and gauging events
- Total accumulated cell balancing time cell0, cell1, cell2, cell3
- Total device firmware runtime
- · Accumulated runtime in JEITA undertemperature range
- Accumulated runtime in JEITA low temperature range
- Accumulated runtime in JEITA standard temperature range
- Accumulated runtime in JEITA recommended temperature range
- Accumulated runtime in JEITA high temperature range
- Accumulated runtime in JEITA overtemperature range

Authentication

- The bq30z554-R1 supports authentication by the host using SHA-1.
- SHA-1 authentication by the gas gauge is required for unsealing and full access.

Power Modes

The bq30z554-R1 supports five power modes to reduce power consumption:

- In NORMAL mode, the bq30z554-R1 performs measurements, calculations, protection decisions, and data
 updates in 0.25-s intervals. Between these intervals, the bq30z554-R1 is in a reduced power stage. In
 addition, the device will provide information for peak TURBO mode power operation.
- The bq30z554-R1 supports a TURBO mode operation by providing information to the host MCU about the battery pack's ability to deliver peak power. The method of operation is based on the host MCU reading register 0x59 (TURBO_POWER) to determine if the selected power level for TURBO mode operation of the MCU is below the max power reported by the gas gauge. Additionally, the device reports current information during the power pulse by reading register 0x5E (TURBO_CURRENT). The information reported by these two registers allows the MCU to determine if the selected TURBO mode operation is safe and will not cause any system reset due to transient power pulses.
- In SLEEP mode, the bq30z554-R1 performs measurements, calculations, protection decisions, and data updates in adjustable time intervals. Between these intervals, the bq30z554-R1 is in a reduced power stage. The bq30z554-R1 has a wake function that enables exit from SLEEP mode when current flow or failure is detected.
- In SHUTDOWN mode, the bq30z554-R1 is completely disabled.
- In SHIP mode, the bq30z554-R1 enters a low-power mode with no voltage, current, and temperature
 measurements, the FETs are turned off, and the MCU is in a halt state. The device wakes up upon SMBus
 communication detection.

NOTE

For a detailed description of the SBS Commands and Data Flash (DF) Registers, refer to the bq30z554-R1 Technical Reference Manual (SLUUA79).

Configuration

System Present Operation

The bq30z554-R1 checks the \overline{PRES} pin periodically (1 s). If \overline{PRES} input is pulled to ground by the external system, the bq30z554-R1 detects this as system present.

Battery Power Interrupt Operation

The bq30z554-R1 can interrupt the battery power by using an external push-button switch and detecting a low-level threshold signal on the GPIO terminal (pin should be configured with an internal pull-up). Once the push button is pressed, there is a delay of 1 s (default) for debounce to detect the low-level threshold. There is also a data flash command for the battery power interrupt timeout. The default value is 30 minutes. If the push-button switch is selected before this timeout, the battery power is restored based on this action.

Timeout Configuration

The timeout feature allows the battery power to be restored once the timer expires. Alternatively, if the value is set to 0, this feature is disabled.

Class	Subclass ID	Subclass	Offset	Name	Туре	Min	Max	Default	Unit
Power	248	Power Off	0	Timeout	U2	0	65535	30	min

Product Folder Links :bq30z554-R1

INSTRUMENTS

BATTERY PARAMETER MEASUREMENTS

Charge and Discharge Counting

The bq30z554-R1 uses an integrating delta-sigma analog-to-digital converter (ADC) for current measurement, and a second delta-sigma ADC for individual cell and battery voltage and temperature measurements.

The integrating delta-sigma ADC measures the charge/discharge flow of the battery by measuring the voltage drop across a small-value sense resistor between the SR1 and SR2 pins. The integrating ADC measures bipolar signals from -0.25 V to 0.25 V. The bq30z554-R1 detects charge activity when $V_{SR} = V_{(SRN)} - V_{(SRN)}$ is positive, and discharge activity when $V_{SR} = V_{(SRP)} - V_{(SRN)}$ is negative. The bq30z554-R1 continuously integrates the signal over time, using an internal counter. The fundamental rate of the counter is 0.65 nVh.

Voltage

The bg30z554-R1 updates the individual series cell voltages at 0.25-s intervals. The internal ADC of the bg30z554-R1 measures the voltage, and scales and calibrates it appropriately. This data is also used to calculate the impedance of the cell for the Impedance Track gas gauging.

Current

The bq30z554-R1 uses the SRP and SRN inputs to measure and calculate the battery charge and discharge current using a 5-m Ω to 20-m Ω typ. sense resistor.

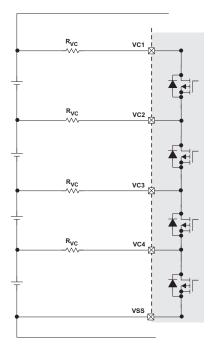
Auto Calibration

The bg30z554-R1 provides an auto-calibration feature to cancel the voltage offset error across SRN and SRP for maximum charge measurement accuracy. The bq30z554-R1 performs auto-calibration when the SMBus lines stay low continuously for a minimum of 5 s.

Temperature

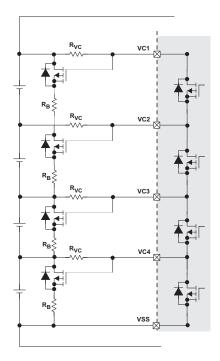
The bg30z554-R1 has an internal temperature sensor and inputs for four external temperature sensors. All five temperature sensor options are enabled individually and configured for cell or FET temperature. Two configurable thermistor models are provided to allow the monitoring of cell temperature in addition to FET temperature, which may be of a higher temperature type.

CELL BALANCING


The device supports cell balancing by bypassing the current of each cell during charging or at rest. If the device internal bypass is used, up to 10 mA can be bypassed and multiple cells can be bypassed at the same time. Higher cell balance current can be achieved by using an external cell balancing circuit. In EXTERNAL CELL BALANCING mode, only one cell at a time can be balanced.

The cell balancing algorithm determines the amount of charge needed to be bypassed to balance the capacity of all cells.

TEXAS INSTRUMENTS


Internal Cell Balancing

When internal cell balancing is configured, the cell balance current is defined by the external resistor R_{VC} at the VCx input.

External Cell Balancing

When internal cell balancing is configured, the cell balance current is defined by $R_{\rm B}$. Only one cell at a time can be balanced.

2 Submit Documentation Feedback

bq30z554-R1 Application Schematic

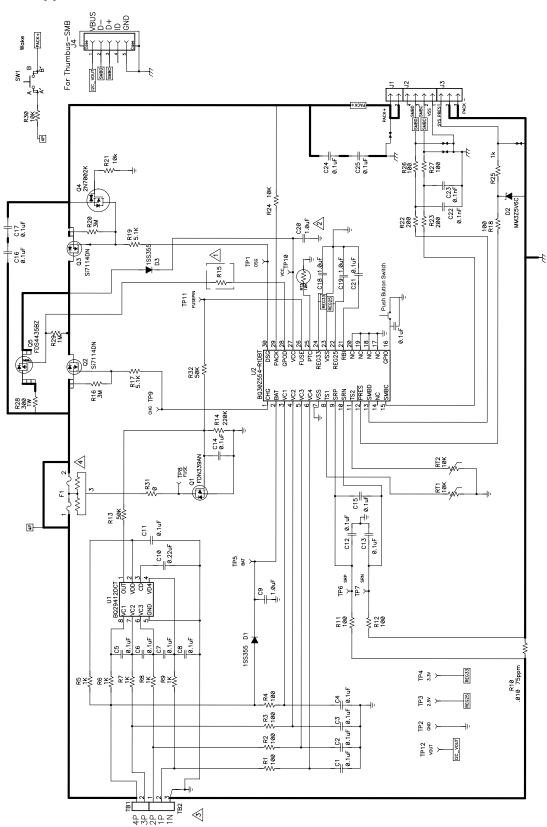


Figure 7. bq30z554-R1 Schematic

www.ti.com 11-Nov-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/	MSL rating/	Op temp (°C)	Part marking
	(1)	(2)			(3)	Ball material	Peak reflow		(6)
						(4)	(5)		
BQ30Z554DBT-R1	Active	Production	TSSOP (DBT) 30	60 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ30Z554
BQ30Z554DBT-R1.A	Active	Production	TSSOP (DBT) 30	60 TUBE	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ30Z554
BQ30Z554DBT-R1.B	Active	Production	TSSOP (DBT) 30	60 TUBE	-	Call TI	Call TI	-40 to 85	
BQ30Z554DBTR-R1	Active	Production	TSSOP (DBT) 30	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ30Z554
BQ30Z554DBTR-R1.A	Active	Production	TSSOP (DBT) 30	2000 LARGE T&R	Yes	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	BQ30Z554
BQ30Z554DBTR-R1.B	Active	Production	TSSOP (DBT) 30	2000 LARGE T&R	-	Call TI	Call TI	-40 to 85	

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

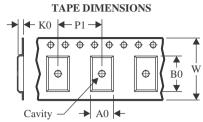
⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.

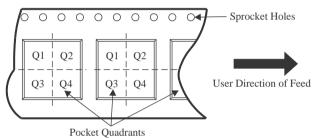
⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

PACKAGE OPTION ADDENDUM


www.ti.com 11-Nov-2025

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Jul-2025


TAPE AND REEL INFORMATION

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

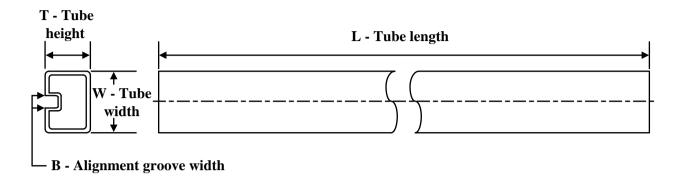
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
BQ30Z554DBTR-R1	TSSOP	DBT	30	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

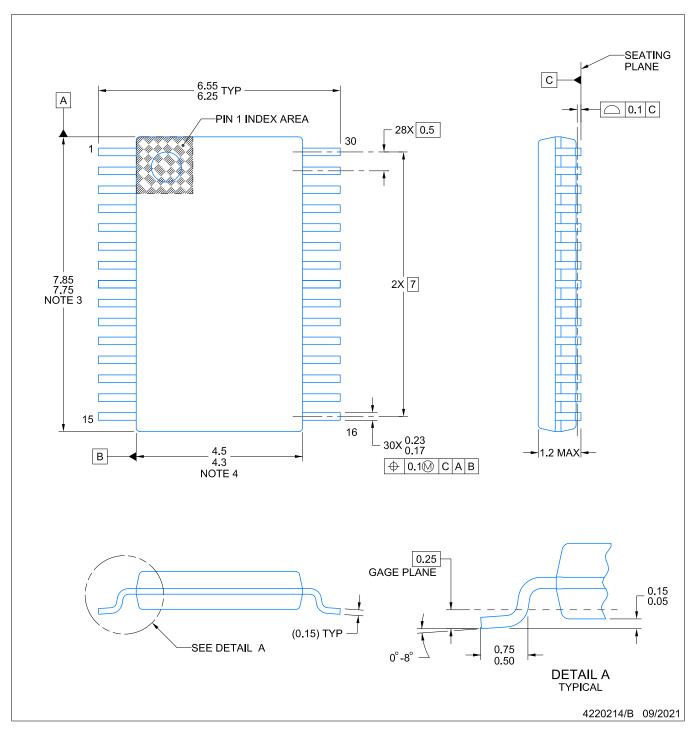
www.ti.com 18-Jul-2025


*All dimensions are nominal

	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
Ι	BQ30Z554DBTR-R1	TSSOP	DBT	30	2000	350.0	350.0	43.0

PACKAGE MATERIALS INFORMATION

www.ti.com 18-Jul-2025

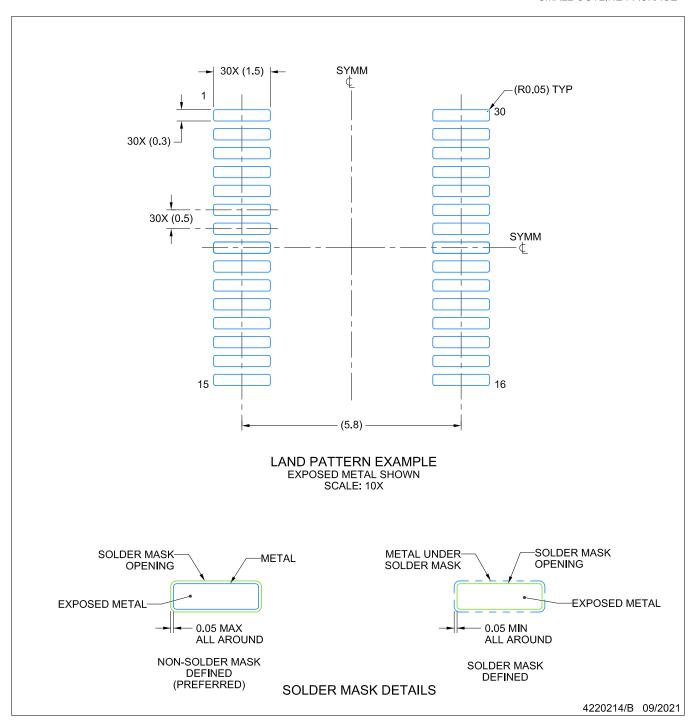

TUBE

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
BQ30Z554DBT-R1	DBT	TSSOP	30	60	530	10.2	3600	3.5
BQ30Z554DBT-R1.A	DBT	TSSOP	30	60	530	10.2	3600	3.5

SMALL OUTLINE PACKAGE

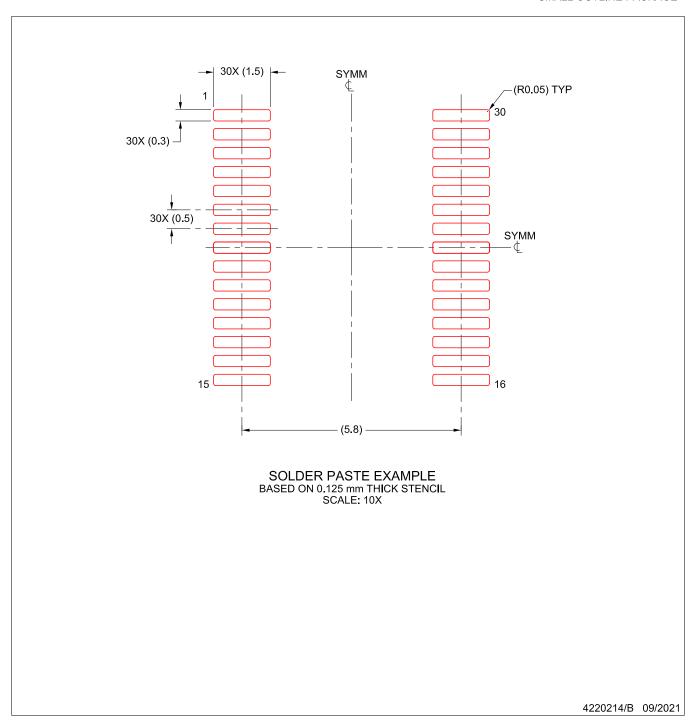
NOTES:


- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.

 2. This drawing is subject to change without notice.

 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.

SMALL OUTLINE PACKAGE


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE PACKAGE

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025