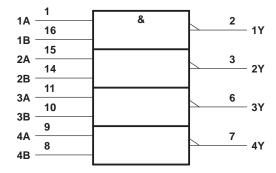
SCAS002A - D2957, JUNE 1987 - REVISED APRIL 1993

- Inputs Are TTL-Voltage Compatible
- Flow-Through Architecture Optimizes PCB Layout
- Center-Pin V_{CC} and GND Configurations Minimize High-Speed Switching Noise
- EPIC™ (Enhanced-Performance Implanted CMOS) 1-μm Process
- 500-mA Typical Latch-Up Immunity at 125°C
- Package Options Include Plastic Small-Outline Packages, Ceramic Chip Carriers, and Standard Plastic and Ceramic 300-mil DIPs

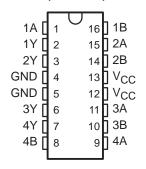
description

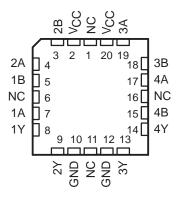

These devices contain four independent 2-input NAND gates. They perform the Boolean functions $Y = \overline{A \cdot B}$ or $Y = \overline{A} + \overline{B}$ in positive logic.

The 54ACT11000 is characterized for operation over the full military temperature range of -55° C to 125°C. The 74ACT11000 is characterized for operation from -40° C to 85°C.

FUNCTION TABLE (each gate)

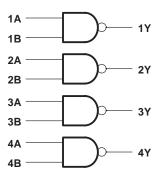
INP	JTS	OUTPUT
Α	В	Y
Н	Н	L
L	Χ	Н
Х	L	Н


logic symbol†


† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for the D, J, and N packages.

54ACT11000 . . . J PACKAGE 74ACT11000 . . . D OR N PACKAGE (TOP VIEW)



54ACT11000 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

logic diagram (positive logic)

EPIC is a trademark of Texas Instruments Incorporated.

SCAS002A - D2957, JUNE 1987 - REVISED APRIL 1993

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

NOTE 1: The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

recommended operating conditions

		54ACT	11000	74ACT	11000	UNIT
		MIN	MAX	MIN	MAX	UNII
VCC	Supply voltage	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2		2		V
VIL	Low-level input voltage		0.8		0.8	V
٧ı	Input voltage	0	VCC	0	VCC	V
VO	Output voltage	0	Vcc	0	Vcc	V
IOH	High-level output current		-24		-24	mA
loL	Low-level output current		24		24	mA
Δt/Δν	Input transition rise or fall rate	0	10	0	10	ns/V
TA	Operating free-air temperature	-55	125	- 40	85	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

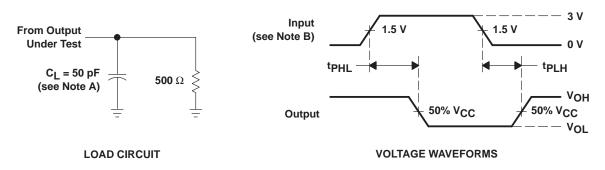
PARAMETER	TEST CONDITIONS	V	T,	_Δ = 25°C	;	54AC	Γ11000	74ACT	11000	UNIT	
PARAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII	
	Jan - 50	4.5 V	4.4			4.4		4.4			
	ΙΟΗ = – 50 μΑ	5.5 V	5.4			5.4		5.4			
Vou	Jan - 24 mA	4.5 V	3.94			3.7		3.8		V	
VOH	IOH = - 24 mA	5.5 V	4.94			4.7		4.8		V	
	$I_{OH} = -50 \text{ mA}^{\ddagger}$	5.5 V				3.85					
	I _{OH} = -75 mA [‡]	5.5 V						3.85			
	I _{OL} = 50 μA	4.5 V			0.1		0.1		0.1		
	ΙΟΣ = 30 μΑ	5.5 V			0.1		0.1		0.1		
Voi	lo 24 mΛ	4.5 V			0.36		0.5		0.44	V	
VOL	IOL = 24 mA	5.5 V			0.36		0.5		0.44		
	$I_{OL} = 50 \text{ mA}^{\ddagger}$	5.5 V					1.65			1	
	$I_{OL} = 75 \text{ mA}^{\ddagger}$	5.5 V							1.65		
lį	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1		±1	μΑ	
ICC	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			4		80		40	μΑ	
ΔI _{CC} §	One input at 3.4 V, Other inputs at GND or V _{CC}	5.5 V			0.9		1		1	mA	
Ci	$V_I = V_{CC}$ or GND	5 V		3.5						pF	

[‡] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

[§] This is the increase in supply current for each input that is at one of the specified TTL voltage levels rather than 0 V or V_{CC}.

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SCAS002A - D2957, JUNE 1987 - REVISED APRIL 1993


switching characteristics over recommended ranges of supply voltage and free-air temperature (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	T,	4 = 25°C	;	54ACT	11000	74ACT	11000	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNII
t _{PLH}	A or B	V	1.5	7.2	10.9	1.5	13.3	1.5	12.3	
^t PHL	AUIB	Y	1.5	5.8	8	1.5	9.5	1.5	8.8	ns

operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance per gate	$C_L = 50 \text{ pF}, \qquad f = 1 \text{ MHz}$	23	pF

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f = 3 \text{ ns}$, $t_f = 3 \text{ ns}$.
- C. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

www.ti.com 8-Sep-2025

PACKAGING INFORMATION

Orderable part number	Status	Material type	Package Pins	Package qty Carrier	RoHS	Lead finish/ Ball material	MSL rating/ Peak reflow	Op temp (°C)	Part marking (6)
	. ,	,,			, ,	(4)	(5)		
74ACT11000D	Obsolete	Production	SOIC (D) 16	-	-	Call TI	Call TI	-40 to 85	ACT11000
74ACT11000DR	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ACT11000
74ACT11000DR.A	Active	Production	SOIC (D) 16	2500 LARGE T&R	Yes	NIPDAU	Level-1-260C-UNLIM	-40 to 85	ACT11000
74ACT11000N	Active	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	74ACT11000N
74ACT11000N.A	Active	Production	PDIP (N) 16	25 TUBE	Yes	NIPDAU	N/A for Pkg Type	-40 to 85	74ACT11000N

⁽¹⁾ Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

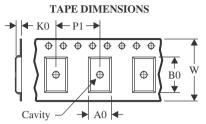
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

⁽²⁾ Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

⁽³⁾ RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

⁽⁴⁾ Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

⁽⁵⁾ MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


⁽⁶⁾ Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

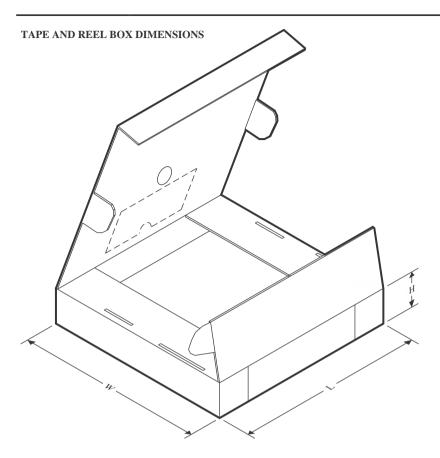
PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

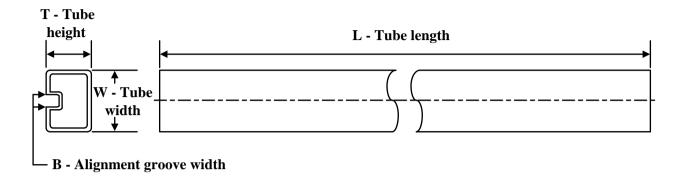


*All dimensions are nominal

Device		Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
74ACT11000DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

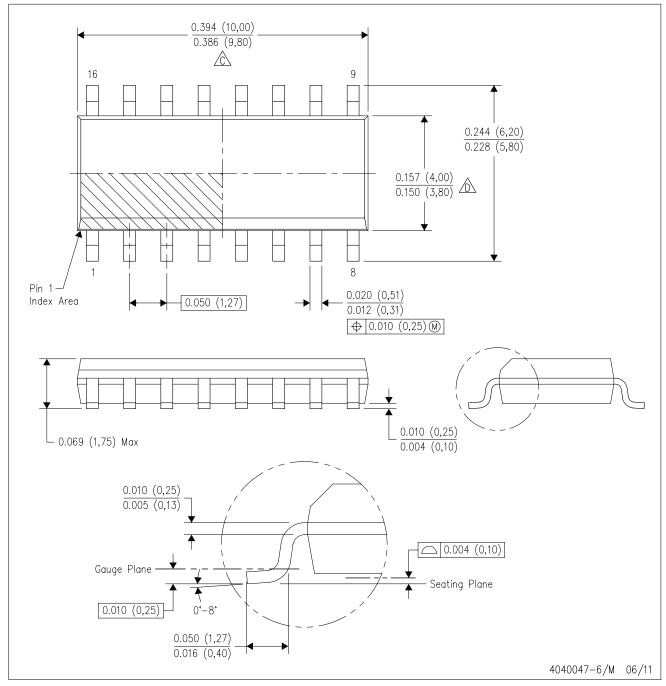

*All dimensions are nominal

Ì	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
ı	74ACT11000DR	SOIC	D	16	2500	340.5	336.1	32.0	

PACKAGE MATERIALS INFORMATION

www.ti.com 23-May-2025

TUBE



*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	T (µm)	B (mm)
74ACT11000N	N	PDIP	16	25	506	13.97	11230	4.32
74ACT11000N	N	PDIP	16	25	506	13.97	11230	4.32
74ACT11000N.A	N	PDIP	16	25	506	13.97	11230	4.32
74ACT11000N.A	N	PDIP	16	25	506	13.97	11230	4.32

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2025. Texas Instruments Incorporated